Department of Biostatistics, SUNY University of Buffalo, 433 Kimball Tower, 3435 Main Street, Buffalo, NY 14214, USA.
Genome Med. 2013 Nov 29;5(11):104. doi: 10.1186/gm507. eCollection 2013.
There are still many open questions in data-analytic research pertaining to biomarker development in the era of personalized/precision medicine and big data. Among them is the question of what constitutes best practice for the extraction of prioritized lists of candidate biomarkers from smaller studies that are 'hypothesis generating' in nature. A recent comparison of methods to detect patient-specific aberrant expression events in small- to medium-sized (10 to 50 samples) studies provides results that favor the use of outlying degree methods. See related Research, http://genomemedicine.com/content/5/11/103.
在个性化/精准医学和大数据时代,有关生物标志物开发的数据分析研究仍存在许多悬而未决的问题。其中一个问题是,从本质上具有“假设产生”性质的较小研究中提取优先候选生物标志物列表的最佳实践方法是什么。最近对用于检测中小规模(10 到 50 个样本)研究中患者特异性异常表达事件的方法进行了比较,结果表明偏向使用离群度方法。参见相关研究,http://genomemedicine.com/content/5/11/103。