Suppr超能文献

比较用于识别个体患者异常表达模式的方法:为精准医学扩充工具包。

Comparison of methods to identify aberrant expression patterns in individual patients: augmenting our toolkit for precision medicine.

机构信息

Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA ; Oregon Clinical and Translational Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.

Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA ; Department of Cell & Developmental Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.

出版信息

Genome Med. 2013 Nov 29;5(11):103. doi: 10.1186/gm509. eCollection 2013.

Abstract

BACKGROUND

Patient-specific aberrant expression patterns in conjunction with functional screening assays can guide elucidation of the cancer genome architecture and identification of therapeutic targets. Since most statistical methods for expression analysis are focused on differences between experimental groups, the performance of approaches for patient-specific expression analyses are currently less well characterized. A comparison of methods for the identification of genes that are dysregulated relative to a single sample in a given set of experimental samples, to our knowledge, has not been performed.

METHODS

We systematically evaluated several methods including variations on the nearest neighbor based outlying degree method, as well as the Zscore and a robust variant for their suitability to detect patient-specific events. The methods were assessed using both simulations and expression data from a cohort of pediatric acute B lymphoblastic leukemia patients.

RESULTS

We first assessed power and false discovery rates using simulations and found that even under optimal conditions, high effect sizes (>4 unit differences) were necessary to have acceptable power for any method (>0.9) though high false discovery rates (>0.1) were pervasive across simulation conditions. Next we introduced a technical factor into the simulation and found that performance was reduced for all methods and that using weights with the outlying degree could provide performance gains depending on the number of samples and genes affected by the technical factor. In our use case that highlights the integration of functional assays and aberrant expression in a patient cohort (the identification of gene dysregulation events associated with the targets from a siRNA screen), we demonstrated that both the outlying degree and the Zscore can successfully identify genes dysregulated in one patient sample. However, only the outlying degree can identify genes dysregulated across several patient samples.

CONCLUSION

Our results show that outlying degree methods may be a useful alternative to the Zscore or Rscore in a personalized medicine context especially in small to medium sized (between 10 and 50 samples) expression datasets with moderate to high sample-to-sample variability. From these results we provide guidelines for detection of aberrant expression in a precision medicine context.

摘要

背景

患者特异性的异常表达模式与功能筛选实验相结合,可以指导阐明癌症基因组结构并鉴定治疗靶点。由于大多数用于表达分析的统计方法都集中在实验组之间的差异上,因此目前对患者特异性表达分析方法的性能描述还不够完善。据我们所知,尚未对用于识别相对于给定实验样本集中单个样本失调的基因的方法进行比较。

方法

我们系统地评估了几种方法,包括基于最近邻的异常程度方法的变体,以及 Z 分数和稳健变体,以评估它们检测患者特异性事件的适用性。这些方法使用模拟数据和儿科急性 B 淋巴细胞白血病患者队列的表达数据进行了评估。

结果

我们首先使用模拟数据评估了功效和假发现率,发现即使在最佳条件下,任何方法(>0.9)都需要具有可接受的功效,才有必要具有高效应大小(>4 个单位差异),尽管在模拟条件下普遍存在高假发现率(>0.1)。接下来,我们在模拟中引入了一个技术因素,发现所有方法的性能都降低了,并且使用异常程度的权重可以根据受技术因素影响的样本和基因的数量提供性能提升。在我们的用例中,重点是将功能测定和患者队列中的异常表达整合在一起(鉴定与 siRNA 筛选目标相关的基因失调事件),我们证明了异常程度和 Z 分数都可以成功地识别一个患者样本中失调的基因。然而,只有异常程度可以识别多个患者样本中失调的基因。

结论

我们的结果表明,在个性化医疗背景下,异常程度方法可能是 Z 分数或 R 分数的有用替代方法,特别是在中等至高度样本间变异性的小到中型(10 到 50 个样本)表达数据集。根据这些结果,我们为精确医学背景下的异常表达检测提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db3/3971350/a22048c35b67/gm509-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验