Suppr超能文献

健康和青光眼患者眼睛光学相干断层扫描中的筛板微结构自动分割

Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes.

作者信息

Nadler Zach, Wang Bo, Wollstein Gadi, Nevins Jessica E, Ishikawa Hiroshi, Kagemann Larry, Sigal Ian A, Ferguson R Daniel, Hammer Daniel X, Grulkowski Ireneusz, Liu Jonathan J, Kraus Martin F, Lu Chen D, Hornegger Joachim, Fujimoto James G, Schuman Joel S

机构信息

UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

出版信息

Biomed Opt Express. 2013 Oct 24;4(11):2596-608. doi: 10.1364/BOE.4.002596. eCollection 2013.

Abstract

We demonstrate an automated segmentation method for in-vivo 3D optical coherence tomography (OCT) imaging of the lamina cribrosa (LC). Manual segmentations of coronal slices of the LC were used as a gold standard in parameter selection and evaluation of the automated technique. The method was validated using two prototype OCT devices; each had a subject cohort including both healthy and glaucomatous eyes. Automated segmentation of in-vivo 3D LC OCT microstructure performed comparably to manual segmentation and is useful for investigative research and in clinical quantification of the LC.

摘要

我们展示了一种用于筛板(LC)体内三维光学相干断层扫描(OCT)成像的自动分割方法。LC冠状切片的手动分割被用作自动技术参数选择和评估的金标准。该方法使用两台原型OCT设备进行了验证;每台设备都有一个包括健康眼睛和青光眼眼睛的受试者队列。体内三维LC OCT微观结构的自动分割与手动分割效果相当,可用于研究性研究和LC的临床量化。

相似文献

1
Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes.
Biomed Opt Express. 2013 Oct 24;4(11):2596-608. doi: 10.1364/BOE.4.002596. eCollection 2013.
2
Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography.
Biomed Opt Express. 2014 Mar 10;5(4):1114-23. doi: 10.1364/BOE.5.001114. eCollection 2014 Apr 1.
3
In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography.
Invest Ophthalmol Vis Sci. 2013 Dec 19;54(13):8270-4. doi: 10.1167/iovs.13-13109.
4
Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography.
Curr Eye Res. 2019 Sep;44(9):968-974. doi: 10.1080/02713683.2019.1604971. Epub 2019 Apr 29.
5
Reproducibility of in-vivo OCT measured three-dimensional human lamina cribrosa microarchitecture.
PLoS One. 2014 Apr 18;9(4):e95526. doi: 10.1371/journal.pone.0095526. eCollection 2014.
6
Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
Ophthalmology. 2009 Feb;116(2):214-22. doi: 10.1016/j.ophtha.2008.09.008. Epub 2008 Dec 16.
8
Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography.
Invest Ophthalmol Vis Sci. 2013 Jul 18;54(7):4798-807. doi: 10.1167/iovs.13-11677.
9
Imaging of the Lamina Cribrosa using Swept-Source Optical Coherence Tomography.
J Curr Glaucoma Pract. 2012 Sep-Dec;6(3):113-9. doi: 10.5005/jp-journals-10008-1117. Epub 2012 Oct 16.

引用本文的文献

1
Lamina cribrosa curvature depth and index as novel parameters in Graves' ophthalmopathy.
Sci Rep. 2025 Jul 2;15(1):22981. doi: 10.1038/s41598-025-06584-8.
3
Under Pressure: Lamina Cribrosa Pore Path Tortuosity in Response to Acute Pressure Modulation.
Transl Vis Sci Technol. 2023 Apr 3;12(4):4. doi: 10.1167/tvst.12.4.4.
5
6
Morphological assessment of lamina cribrosa in idiopathic intracranial hypertension.
Indian J Ophthalmol. 2020 Jan;68(1):164-167. doi: 10.4103/ijo.IJO_142_19.
7
Characterizing the Collagen Network Structure and Pressure-Induced Strains of the Human Lamina Cribrosa.
Invest Ophthalmol Vis Sci. 2019 Jun 3;60(7):2406-2422. doi: 10.1167/iovs.18-25863.
8
Thin Lamina Cribrosa Beams Have Different Collagen Microstructure Than Thick Beams.
Invest Ophthalmol Vis Sci. 2018 Sep 4;59(11):4653-4661. doi: 10.1167/iovs.18-24763.
9
OIPAV: an Integrated Software System for Ophthalmic Image Processing, Analysis, and Visualization.
J Digit Imaging. 2019 Feb;32(1):183-197. doi: 10.1007/s10278-017-0047-6.

本文引用的文献

1
Multimodal adaptive optics retinal imager: design and performance.
J Opt Soc Am A Opt Image Sci Vis. 2012 Dec 1;29(12):2598-607. doi: 10.1364/JOSAA.29.002598.
2
Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma.
Ophthalmology. 2013 Apr;120(4):745-52. doi: 10.1016/j.ophtha.2012.09.051. Epub 2012 Dec 20.
3
OpenMx: An Open Source Extended Structural Equation Modeling Framework.
Psychometrika. 2011 Apr 1;76(2):306-317. doi: 10.1007/s11336-010-9200-6.
4
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
5
Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns.
Biomed Opt Express. 2012 Jun 1;3(6):1182-99. doi: 10.1364/BOE.3.001182. Epub 2012 May 3.
6
TrakEM2 software for neural circuit reconstruction.
PLoS One. 2012;7(6):e38011. doi: 10.1371/journal.pone.0038011. Epub 2012 Jun 19.
7
In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy.
Invest Ophthalmol Vis Sci. 2012 Jun 26;53(7):4111-9. doi: 10.1167/iovs.11-7536.
8
In vivo evaluation of focal lamina cribrosa defects in glaucoma.
Arch Ophthalmol. 2012 May;130(5):552-9. doi: 10.1001/archopthalmol.2011.1309.
9
Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma.
Invest Ophthalmol Vis Sci. 2012 Jan 20;53(1):198-204. doi: 10.1167/iovs.11-7848.
10
Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography.
Am J Ophthalmol. 2011 Jul;152(1):87-95.e1. doi: 10.1016/j.ajo.2011.01.024. Epub 2011 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验