Suppr超能文献

多模态自适应光学视网膜成像仪:设计与性能

Multimodal adaptive optics retinal imager: design and performance.

作者信息

Hammer Daniel X, Ferguson R Daniel, Mujat Mircea, Patel Ankit, Plumb Emily, Iftimia Nicusor, Chui Toco Y P, Akula James D, Fulton Anne B

机构信息

Physical Sciences Inc., 20 New England Business Center, Andover, Massachusetts 01810, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2012 Dec 1;29(12):2598-607. doi: 10.1364/JOSAA.29.002598.

Abstract

Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are complementary imaging modalities, the combination of which can provide clinicians with a wealth of information to detect retinal diseases, monitor disease progression, or assess new therapies. Adaptive optics (AO) is a tool that enables correction of wavefront distortions from ocular aberrations. We have developed a multimodal adaptive optics system (MAOS) for high-resolution multifunctional use in a variety of research and clinical applications. The system integrates both OCT and SLO imaging channels into an AO beam path. The optics and hardware were designed with specific features for simultaneous SLO/OCT output, for high-fidelity AO correction, for use in humans, primates, and small animals, and for efficient location and orientation of retinal regions of interest. The MAOS system was tested on human subjects and rodents. The design, performance characterization, and initial representative results from the human and animal studies are presented and discussed.

摘要

光学相干断层扫描(OCT)和扫描激光检眼镜(SLO)是互补的成像方式,两者结合可为临床医生提供丰富信息,用于检测视网膜疾病、监测疾病进展或评估新疗法。自适应光学(AO)是一种能够校正眼像差引起的波前畸变的工具。我们开发了一种多模态自适应光学系统(MAOS),用于在各种研究和临床应用中进行高分辨率多功能使用。该系统将OCT和SLO成像通道集成到AO光束路径中。光学器件和硬件的设计具有特定功能,可实现SLO/OCT同步输出、高保真AO校正、适用于人类、灵长类动物和小动物,以及高效定位和确定视网膜感兴趣区域的方向。MAOS系统已在人类受试者和啮齿动物身上进行了测试。本文介绍并讨论了该系统的设计、性能表征以及来自人类和动物研究的初步代表性结果。

相似文献

1
Multimodal adaptive optics retinal imager: design and performance.
J Opt Soc Am A Opt Image Sci Vis. 2012 Dec 1;29(12):2598-607. doi: 10.1364/JOSAA.29.002598.
2
High resolution multimodal clinical ophthalmic imaging system.
Opt Express. 2010 May 24;18(11):11607-21. doi: 10.1364/OE.18.011607.
3
Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for mouse retina imaging.
Biomed Opt Express. 2022 Dec 19;14(1):299-314. doi: 10.1364/BOE.473447. eCollection 2023 Jan 1.
4
Adaptive-optics ultrahigh-resolution optical coherence tomography.
Opt Lett. 2004 Sep 15;29(18):2142-4. doi: 10.1364/ol.29.002142.
6
Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging.
Opt Lett. 2019 Sep 1;44(17):4219-4222. doi: 10.1364/OL.44.004219.
7
Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.
Biomed Opt Express. 2015 May 21;6(6):2191-210. doi: 10.1364/BOE.6.002191. eCollection 2015 Jun 1.
9
Adaptive optics imaging of the retina.
Indian J Ophthalmol. 2014 Jan;62(1):60-5. doi: 10.4103/0301-4738.126185.

引用本文的文献

1
Advancing Insights into Pediatric Macular Diseases: A Comprehensive Review.
J Clin Med. 2025 Jan 18;14(2):614. doi: 10.3390/jcm14020614.
2
A parafoveal retinal cones analysis using adaptive-optics retinal camera in patients with primary open angle glaucoma.
Eye (Lond). 2024 Oct;38(15):2932-2938. doi: 10.1038/s41433-024-03191-1. Epub 2024 Sep 2.
3
The Surviving, Not Thriving, Photoreceptors in Patients with Stargardt Disease.
Diagnostics (Basel). 2024 Jul 17;14(14):1545. doi: 10.3390/diagnostics14141545.
4
Non-Rigid Registration for High-Resolution Retinal Imaging.
Diagnostics (Basel). 2023 Jul 6;13(13):2285. doi: 10.3390/diagnostics13132285.
5
Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina.
Biomed Opt Express. 2022 Oct 17;13(11):5860-5878. doi: 10.1364/BOE.462594. eCollection 2022 Nov 1.
6
Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for mouse retina imaging.
Biomed Opt Express. 2022 Dec 19;14(1):299-314. doi: 10.1364/BOE.473447. eCollection 2023 Jan 1.
7
Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited].
Biomed Opt Express. 2022 Dec 20;14(1):387-428. doi: 10.1364/BOE.472274. eCollection 2023 Jan 1.
8
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking.
Sci Rep. 2022 Jun 10;12(1):9577. doi: 10.1038/s41598-022-13631-1.
9
Integrating adaptive optics-SLO and OCT for multimodal visualization of the human retinal pigment epithelial mosaic.
Biomed Opt Express. 2021 Feb 17;12(3):1449-1466. doi: 10.1364/BOE.413438. eCollection 2021 Mar 1.
10
Adaptive optics: principles and applications in ophthalmology.
Eye (Lond). 2021 Jan;35(1):244-264. doi: 10.1038/s41433-020-01286-z. Epub 2020 Nov 30.

本文引用的文献

1
Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa.
Gene Ther. 2013 Apr;20(4):425-34. doi: 10.1038/gt.2012.53. Epub 2012 Jul 19.
2
Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns.
Biomed Opt Express. 2012 Jun 1;3(6):1182-99. doi: 10.1364/BOE.3.001182. Epub 2012 May 3.
3
Adaptive optics retinal imaging in the living mouse eye.
Biomed Opt Express. 2012 Apr 1;3(4):715-34. doi: 10.1364/BOE.3.000715. Epub 2012 Mar 15.
4
Foveal avascular zone and its relationship to foveal pit shape.
Optom Vis Sci. 2012 May;89(5):602-10. doi: 10.1097/OPX.0b013e3182504227.
5
Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope.
Biomed Opt Express. 2011 Jul 1;2(7):1864-76. doi: 10.1364/BOE.2.001864. Epub 2011 Jun 8.
9
Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy.
Biomed Opt Express. 2010 Dec 17;2(1):139-48. doi: 10.1364/BOE.2.000139.
10
Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT.
Biomed Opt Express. 2010 Dec 15;2(1):100-12. doi: 10.1364/BOE.2.000100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验