Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, USA.
Biol Direct. 2013 Dec 5;8:31. doi: 10.1186/1745-6150-8-31.
Biological systems produce outputs in response to variable inputs. Input-output relations tend to follow a few regular patterns. For example, many chemical processes follow the S-shaped Hill equation relation between input concentrations and output concentrations. That Hill equation pattern contradicts the fundamental Michaelis-Menten theory of enzyme kinetics. I use the discrepancy between the expected Michaelis-Menten process of enzyme kinetics and the widely observed Hill equation pattern of biological systems to explore the general properties of biological input-output relations. I start with the various processes that could explain the discrepancy between basic chemistry and biological pattern. I then expand the analysis to consider broader aspects that shape biological input-output relations. Key aspects include the input-output processing by component subsystems and how those components combine to determine the system's overall input-output relations. That aggregate structure often imposes strong regularity on underlying disorder. Aggregation imposes order by dissipating information as it flows through the components of a system. The dissipation of information may be evaluated by the analysis of measurement and precision, explaining why certain common scaling patterns arise so frequently in input-output relations. I discuss how aggregation, measurement and scale provide a framework for understanding the relations between pattern and process. The regularity imposed by those broader structural aspects sets the contours of variation in biology. Thus, biological design will also tend to follow those contours. Natural selection may act primarily to modulate system properties within those broad constraints.
生物系统会针对变化的输入产生输出。输入-输出关系往往遵循几种规则模式。例如,许多化学过程遵循输入浓度和输出浓度之间的 S 形 Hill 方程关系。这种 Hill 方程模式与酶动力学的基本 Michaelis-Menten 理论相矛盾。我利用酶动力学的预期 Michaelis-Menten 过程与广泛观察到的生物系统的 Hill 方程模式之间的差异,来探索生物输入-输出关系的一般性质。我从可以解释基本化学和生物模式之间差异的各种过程开始。然后,我将分析扩展到考虑更广泛的方面,这些方面塑造了生物的输入-输出关系。关键方面包括组件子系统的输入-输出处理以及这些组件如何组合来确定系统的整体输入-输出关系。这种总体结构通常对基础的无序施加强烈的规律性。聚合通过在系统组件中传递信息来施加秩序,从而消耗信息。信息的耗散可以通过测量和精度的分析来评估,这解释了为什么某些常见的缩放模式在输入-输出关系中如此频繁地出现。我讨论了聚合、测量和比例如何为理解模式和过程之间的关系提供框架。这些更广泛的结构方面施加的规律性设定了生物学中变化的轮廓。因此,生物设计也将倾向于遵循这些轮廓。自然选择可能主要作用是在这些广泛的约束内调节系统属性。