Suppr超能文献

简单细菌信号系统中的输入输出稳健性。

Input output robustness in simple bacterial signaling systems.

作者信息

Shinar Guy, Milo Ron, Martínez María Rodríguez, Alon Uri

机构信息

Departments of Molecular Cell Biology and Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5. doi: 10.1073/pnas.0706792104. Epub 2007 Dec 6.

Abstract

Biological signaling systems produce an output, such as the level of a phosphorylated protein, in response to defined input signals. The output level as a function of the input level is called the system's input-output relation. One may ask whether this input-output relation is sensitive to changes in the concentrations of the system's components, such as proteins and ATP. Because component concentrations often vary from cell to cell, it might be expected that the input-output relation will likewise vary. If this is the case, different cells exposed to the same input signal will display different outputs. Such variability can be deleterious in systems where survival depends on accurate match of output to input. Here we suggest a mechanism that can provide input-output robustness, that is, an input-output relation that does not depend on variations in the concentrations of any of the system's components. The mechanism is based on certain bacterial signaling systems. It explains how specific molecular details can work together to provide robustness. Moreover, it suggests an approach that can help identify a wide family of nonequilibrium mechanisms that potentially have robust input-output relations.

摘要

生物信号系统会根据特定的输入信号产生一个输出,比如磷酸化蛋白的水平。作为输入水平函数的输出水平被称为系统的输入-输出关系。人们可能会问,这种输入-输出关系是否对系统组件(如蛋白质和ATP)浓度的变化敏感。由于组件浓度在不同细胞间常常有所不同,因此可以预期输入-输出关系也会随之变化。如果是这样,暴露于相同输入信号的不同细胞将显示出不同的输出。在生存依赖于输出与输入精确匹配的系统中,这种变异性可能是有害的。在此,我们提出一种能够提供输入-输出稳健性的机制,也就是说,一种不依赖于系统任何组件浓度变化的输入-输出关系。该机制基于某些细菌信号系统。它解释了特定分子细节如何共同作用以提供稳健性。此外,它还提出了一种有助于识别可能具有稳健输入-输出关系的广泛非平衡机制家族的方法。

相似文献

1
Input output robustness in simple bacterial signaling systems.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5. doi: 10.1073/pnas.0706792104. Epub 2007 Dec 6.
2
Site-Directed Mutagenesis to Improve Sensitivity of a Synthetic Two-Component Signaling System.
PLoS One. 2016 Jan 22;11(1):e0147494. doi: 10.1371/journal.pone.0147494. eCollection 2016.
3
[His-Asp phosphotransfer signal transduction].
Tanpakushitsu Kakusan Koso. 1999 Mar;44(4 Suppl):412-20.
4
A novel mechanism for connecting bacterial two-component signal-transduction systems.
Trends Biochem Sci. 2005 Feb;30(2):70-2. doi: 10.1016/j.tibs.2004.12.003.
6
Protein engineering of bacterial histidine kinase receptor systems.
Protein Pept Lett. 2010 Jul;17(7):867-73. doi: 10.2174/092986610791306706.
7
Single cell super-resolution imaging of E. coli OmpR during environmental stress.
Integr Biol (Camb). 2015 Oct;7(10):1297-308. doi: 10.1039/c5ib00077g. Epub 2015 Jul 9.
9
Mechanism of regulation of receptor histidine kinases.
Structure. 2012 Jan 11;20(1):56-66. doi: 10.1016/j.str.2011.11.014.
10
Rewiring the specificity of two-component signal transduction systems.
Cell. 2008 Jun 13;133(6):1043-54. doi: 10.1016/j.cell.2008.04.040.

引用本文的文献

1
Quantitative perturbation-phenotype maps reveal nonlinear responses underlying robustness of PAR-dependent asymmetric cell division.
PLoS Biol. 2024 Dec 9;22(12):e3002437. doi: 10.1371/journal.pbio.3002437. eCollection 2024 Dec.
2
General relationship of local topologies, global dynamics, and bifurcation in cellular networks.
NPJ Syst Biol Appl. 2024 Nov 18;10(1):135. doi: 10.1038/s41540-024-00470-1.
3
Chemical Reaction Models in Synthetic Promoter Design in Bacteria.
Methods Mol Biol. 2024;2844:3-31. doi: 10.1007/978-1-0716-4063-0_1.
5
Design patterns of biological cells.
Bioessays. 2024 Mar;46(3):e2300188. doi: 10.1002/bies.202300188. Epub 2024 Jan 21.
6
The role of CenKR in the coordination of cell elongation and division.
mBio. 2023 Aug 31;14(4):e0063123. doi: 10.1128/mbio.00631-23. Epub 2023 Jun 7.
7
Synthetic bacteria for the detection and bioremediation of heavy metals.
Front Bioeng Biotechnol. 2023 Apr 13;11:1178680. doi: 10.3389/fbioe.2023.1178680. eCollection 2023.
8
Dynamics and Sensitivity of Signaling Pathways.
Curr Pathobiol Rep. 2022 Jun;10(2):11-22. doi: 10.1007/s40139-022-00230-y. Epub 2022 Jun 27.
9
Design principles of improving the dose-response alignment in coupled GTPase switches.
NPJ Syst Biol Appl. 2023 Jan 31;9(1):3. doi: 10.1038/s41540-023-00266-9.

本文引用的文献

1
The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC.
J Bacteriol. 2005 Aug;187(16):5723-31. doi: 10.1128/JB.187.16.5723-5731.2005.
2
Stochasticity in gene expression: from theories to phenotypes.
Nat Rev Genet. 2005 Jun;6(6):451-64. doi: 10.1038/nrg1615.
3
Biological robustness.
Nat Rev Genet. 2004 Nov;5(11):826-37. doi: 10.1038/nrg1471.
4
Continuous control in bacterial regulatory circuits.
J Bacteriol. 2004 Nov;186(22):7618-25. doi: 10.1128/JB.186.22.7618-7625.2004.
5
Reconstitution of the Rhodobacter sphaeroides cbb3-PrrBA signal transduction pathway in vitro.
Biochemistry. 2004 Jun 22;43(24):7915-23. doi: 10.1021/bi0496440.
6
Robust control in bacterial regulatory circuits.
Curr Opin Microbiol. 2004 Apr;7(2):198-202. doi: 10.1016/j.mib.2004.02.002.
7
Control of rRNA expression by small molecules is dynamic and nonredundant.
Mol Cell. 2003 Jul;12(1):125-34. doi: 10.1016/s1097-2765(03)00266-1.
8
Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell.
Curr Opin Cell Biol. 2003 Apr;15(2):221-31. doi: 10.1016/s0955-0674(03)00017-6.
9
Genetic and biochemical studies of phosphatase activity of PhoR.
J Bacteriol. 2003 Feb;185(3):1112-5. doi: 10.1128/JB.185.3.1112-1115.2003.
10
Structure and mechanism of Na,K-ATPase: functional sites and their interactions.
Annu Rev Physiol. 2003;65:817-49. doi: 10.1146/annurev.physiol.65.092101.142558. Epub 2002 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验