Suppr超能文献

比较效果研究中选择偏倚与混杂偏倚的辨别

Distinguishing Selection Bias and Confounding Bias in Comparative Effectiveness Research.

作者信息

Haneuse Sebastien

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA.

出版信息

Med Care. 2016 Apr;54(4):e23-9. doi: 10.1097/MLR.0000000000000011.

Abstract

Comparative effectiveness research (CER) aims to provide patients and physicians with evidence-based guidance on treatment decisions. As researchers conduct CER they face myriad challenges. Although inadequate control of confounding is the most-often cited source of potential bias, selection bias that arises when patients are differentially excluded from analyses is a distinct phenomenon with distinct consequences: confounding bias compromises internal validity, whereas selection bias compromises external validity. Despite this distinction, however, the label "treatment-selection bias" is being used in the CER literature to denote the phenomenon of confounding bias. Motivated by an ongoing study of treatment choice for depression on weight change over time, this paper formally distinguishes selection and confounding bias in CER. By formally distinguishing selection and confounding bias, this paper clarifies important scientific, design, and analysis issues relevant to ensuring validity. First is that the 2 types of biases may arise simultaneously in any given study; even if confounding bias is completely controlled, a study may nevertheless suffer from selection bias so that the results are not generalizable to the patient population of interest. Second is that the statistical methods used to mitigate the 2 biases are themselves distinct; methods developed to control one type of bias should not be expected to address the other. Finally, the control of selection and confounding bias will often require distinct covariate information. Consequently, as researchers plan future studies of comparative effectiveness, care must be taken to ensure that all data elements relevant to both confounding and selection bias are collected.

摘要

比较效果研究(CER)旨在为患者和医生提供基于证据的治疗决策指导。在研究人员开展CER的过程中,他们面临着无数挑战。尽管混杂因素控制不足是最常被提及的潜在偏倚来源,但当患者被不同程度地排除在分析之外时出现的选择偏倚是一种具有不同后果的独特现象:混杂偏倚损害内部效度,而选择偏倚损害外部效度。然而,尽管存在这种区别,但在CER文献中,“治疗选择偏倚”这一标签正被用于表示混杂偏倚现象。受一项正在进行的关于抑郁症治疗选择对体重随时间变化影响的研究启发,本文正式区分了CER中的选择偏倚和混杂偏倚。通过正式区分选择偏倚和混杂偏倚,本文阐明了与确保效度相关的重要科学、设计和分析问题。首先,在任何给定研究中,这两种类型的偏倚可能同时出现;即使混杂偏倚得到完全控制,一项研究仍可能存在选择偏倚,从而导致结果无法推广到感兴趣的患者群体。其次,用于减轻这两种偏倚的统计方法本身是不同的;用于控制一种类型偏倚的方法不应期望能解决另一种类型的偏倚。最后,选择偏倚和混杂偏倚的控制通常需要不同的协变量信息。因此,在研究人员规划未来的比较效果研究时,必须注意确保收集与混杂偏倚和选择偏倚相关的所有数据元素。

相似文献

1
Distinguishing Selection Bias and Confounding Bias in Comparative Effectiveness Research.
Med Care. 2016 Apr;54(4):e23-9. doi: 10.1097/MLR.0000000000000011.
5
Bounding formulas for selection bias.
Am J Epidemiol. 2015 Nov 15;182(10):868-72. doi: 10.1093/aje/kwv130. Epub 2015 Oct 29.
6
A General Framework for Considering Selection Bias in EHR-Based Studies: What Data Are Observed and Why?
EGEMS (Wash DC). 2016 Aug 31;4(1):1203. doi: 10.13063/2327-9214.1203. eCollection 2016.
7
Definitions of Bias in Clinical Research.
Methods Mol Biol. 2021;2249:35-52. doi: 10.1007/978-1-0716-1138-8_3.
8
Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling.
J Clin Epidemiol. 2013 Aug;66(8 Suppl):S99-109. doi: 10.1016/j.jclinepi.2013.01.016.
9
A review of covariate selection for non-experimental comparative effectiveness research.
Pharmacoepidemiol Drug Saf. 2013 Nov;22(11):1139-45. doi: 10.1002/pds.3506. Epub 2013 Sep 5.
10

引用本文的文献

1
TriNetX and Real-World Evidence: A Critical Review of Its Strengths, Limitations, and Bias Considerations in Clinical Research.
ASIDE Intern Med. 2025 Apr;1(2):24-33. doi: 10.71079/aside.im.03222516. Epub 2025 Mar 22.
3
4
The evolution of selection bias in the recent epidemiologic literature-a selective overview.
Am J Epidemiol. 2025 Mar 4;194(3):580-584. doi: 10.1093/aje/kwae282.
10
Association of Time to Definitive Hemostasis With Mortality in Patients With Solid Organ Injuries.
Cureus. 2023 Sep 17;15(9):e45401. doi: 10.7759/cureus.45401. eCollection 2023 Sep.

本文引用的文献

4
Methods in comparative effectiveness research.
J Clin Oncol. 2012 Dec 1;30(34):4208-14. doi: 10.1200/JCO.2012.42.2659. Epub 2012 Oct 15.
5
Comparative effectiveness research in oncology methodology: observational data.
J Clin Oncol. 2012 Dec 1;30(34):4215-22. doi: 10.1200/JCO.2012.41.6701. Epub 2012 Oct 15.
7
Comparative effectiveness of revascularization strategies.
N Engl J Med. 2012 Apr 19;366(16):1467-76. doi: 10.1056/NEJMoa1110717. Epub 2012 Mar 27.
9
The methods of comparative effectiveness research.
Annu Rev Public Health. 2012 Apr;33:425-45. doi: 10.1146/annurev-publhealth-031811-124610. Epub 2012 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验