Suppr超能文献

开发一个新的基于风险的框架,以指导水质监测投资。

Development of a new risk-based framework to guide investment in water quality monitoring.

机构信息

Aquatic Ecology and Ecosystem Studies, M015, School of Environmental Systems Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009,

出版信息

Environ Monit Assess. 2014 Apr;186(4):2455-64. doi: 10.1007/s10661-013-3552-1. Epub 2013 Dec 6.

Abstract

An innovative framework for optimising investments in water quality monitoring has been developed for use by water and environmental agencies. By utilising historical data, investigating the accuracy of monitoring methods and considering the risk tolerance of the management agency, this new methodology calculates optimum water quality monitoring frequencies for individual water bodies. Such information can be applied to water quality constituents of concern in both engineered and natural water bodies and will guide the investment of monitoring resources. Here we present both the development of the framework itself and a proof of concept by applying it to the occurrence of hazardous cyanobacterial blooms in freshwater lakes. This application to existing data demonstrates the robustness of the approach and the capacity of the framework to optimise the allocation of both monitoring and mitigation resources. When applied to cyanobacterial blooms in the Swan Coastal Plain of Western Australia, we determined that optimising the monitoring regime at individual lakes could greatly alter the overall monitoring schedule for the region, rendering it more risk averse without increasing the amount of monitoring resources required. For water resources with high-density temporal data related to constituents of concern, a similar reduction in risk may be observed by applying the framework.

摘要

一个用于优化水质监测投资的创新框架已经开发出来,供水和环境机构使用。通过利用历史数据、调查监测方法的准确性以及考虑管理机构的风险承受能力,这种新方法为单个水体计算了最佳水质监测频率。此类信息可应用于工程和自然水体中关注的水质成分,并将指导监测资源的投资。在这里,我们介绍了该框架本身的开发以及通过将其应用于淡水湖泊中有害蓝藻水华的发生来证明其概念的合理性。该方法在现有数据中的应用证明了该方法的稳健性以及该框架优化监测和缓解资源分配的能力。当将其应用于西澳大利亚天鹅沿海平原的蓝藻水华时,我们确定优化个别湖泊的监测方案可以极大地改变该地区的整体监测计划,使其在不增加所需监测资源量的情况下更能规避风险。对于与关注成分有关的高密度时间数据的水资源,可以通过应用该框架观察到类似的风险降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验