Suppr超能文献

25 周年纪念文章:体异质结太阳能电池:了解工作机制。

25th anniversary article: Bulk heterojunction solar cells: understanding the mechanism of operation.

机构信息

Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.

出版信息

Adv Mater. 2014 Jan 8;26(1):10-27. doi: 10.1002/adma.201304373. Epub 2013 Dec 6.

Abstract

The status of understanding of the operation of bulk heterojunction (BHJ) solar cells is reviewed. Because the carrier photoexcitation recombination lengths are typically 10 nm in these disordered materials, the length scale for self-assembly must be of order 10-20 nm. Experiments have verified the existence of the BHJ nanostructure, but the morphology remains complex and a limiting factor. Three steps are required for generation of electrical power: i) absorption of photons from the sun; ii) photoinduced charge separation and the generation of mobile carriers; iii) collection of electrons and holes at opposite electrodes. The ultrafast charge transfer process arises from fundamental quantum uncertainty; mobile carriers are directly generated (electrons in the acceptor domains and holes in the donor domains) by the ultrafast charge transfer (≈70%) with ≈30% generated by exciton diffusion to a charge separating heterojunction. Sweep-out of the mobile carriers by the internal field prior to recombination is essential for high performance. Bimolecular recombination dominates in materials where the donor and acceptor phases are pure. Impurities degrade performance by introducing Shockly-Read-Hall decay. The review concludes with a summary of the problems to be solved to achieve the predicted power conversion efficiencies of >20% for a single cell.

摘要

综述了对体异质结(BHJ)太阳能电池工作状态的理解。由于这些无序材料中的载流子光激发复合长度通常为 10nm,自组装的长度尺度必须在 10-20nm 范围内。实验已经验证了 BHJ 纳米结构的存在,但形貌仍然很复杂,是一个限制因素。产生电能需要三个步骤:i)吸收来自太阳的光子;ii)光诱导电荷分离和产生可移动载流子;iii)在相反电极处收集电子和空穴。超快电荷转移过程源于基本量子不确定性;通过超快电荷转移(≈70%)直接产生可移动载流子(受主域中的电子和施主域中的空穴),≈30%通过激子扩散到电荷分离异质结产生。在复合之前,通过内场扫除可移动载流子对于高性能至关重要。在施主相和受主相为纯相的材料中,双分子复合占主导地位。杂质通过引入 Shockly-Read-Hall 衰减来降低性能。本综述最后总结了为实现单电池预测的 >20%功率转换效率所需要解决的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验