Suppr超能文献

厌氧寄生原生动物中高度分化的线粒体相关细胞器。

Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa.

作者信息

Makiuchi Takashi, Nozaki Tomoyoshi

机构信息

Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.

Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.

出版信息

Biochimie. 2014 May;100:3-17. doi: 10.1016/j.biochi.2013.11.018. Epub 2013 Dec 4.

Abstract

The mitochondria have arisen as a consequence of endosymbiosis of an ancestral α-proteobacterium with a methane-producing archae. The main function of the canonical aerobic mitochondria include ATP generation via oxidative phosphorylation, heme and phospholipid synthesis, calcium homeostasis, programmed cell death, and the formation of iron-sulfur clusters. Under oxygen-restricted conditions, the mitochondrion has often undergone remarkable reductive alterations of its content and function, leading to the generation of mitochondrion-related organelles (MROs), such as mitosomes, hydrogenosomes, and mithochondrion-like organelles, which are found in a wide range of anaerobic/microaerophilic eukaryotes that include several medically important parasitic protists such as Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, Cryptosporidium parvum, Blastocystis hominis, and Encephalitozoon cuniculi, as well as free-living protists such as Sawyeria marylandensis, Neocallimastix patriciarum, and Mastigamoeba balamuthi. The transformation from canonical aerobic mitochondria to MROs apparently have occurred in independent lineages, and resulted in the diversity of their components and functions. Due to medical and veterinary importance of the MRO-possessing human- and animal-pathogenic protozoa, their genomic, transcriptomic, proteomic, and biochemical evidence has been accumulated. Detailed analyses of the constituents and functions of the MROs in such anaerobic pathogenic protozoa, which reside oxygen-deprived or oxygen-poor environments such as the mammalian intestine and the genital organs, should illuminate the current evolutionary status of the MROs in these organisms, and give insight to environmental constraints that drive the evolution of eukaryotes and their organelles. In this review, we summarize and discuss the diverse metabolic functions and protein transport systems of the MROs from anaerobic parasitic protozoa.

摘要

线粒体是由一种原始α-变形菌与产甲烷古菌内共生而产生的。典型需氧线粒体的主要功能包括通过氧化磷酸化产生ATP、血红素和磷脂合成、钙稳态、程序性细胞死亡以及铁硫簇的形成。在氧气受限的条件下,线粒体其内容物和功能常常会发生显著的还原性改变,从而导致产生与线粒体相关的细胞器(MRO),如纺锤剩体、氢化酶体和类线粒体细胞器,这些细胞器存在于广泛的厌氧/微需氧真核生物中,包括几种具有重要医学意义的寄生原生生物,如溶组织内阿米巴、肠贾第虫、阴道毛滴虫、微小隐孢子虫、人芽囊原虫和兔脑炎微孢子虫,以及自由生活的原生生物,如马里兰索耶氏菌、派翠西亚新丽鞭毛虫和巴氏鞭毛虫。从典型需氧线粒体到MRO的转变显然发生在独立的谱系中,并导致了它们的组成和功能的多样性。由于拥有MRO的人类和动物致病原生动物在医学和兽医学上的重要性,已经积累了它们的基因组、转录组、蛋白质组和生化证据。对存在于缺氧或低氧环境(如哺乳动物肠道和生殖器官)中的此类厌氧致病原生动物中MRO的成分和功能进行详细分析,应能阐明这些生物体中MRO的当前进化状态,并深入了解驱动真核生物及其细胞器进化的环境限制因素。在这篇综述中,我们总结并讨论了来自厌氧寄生原生动物的MRO的多种代谢功能和蛋白质转运系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验