Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC, 27695, U.S.A.
Stat Med. 2014 May 10;33(10):1738-49. doi: 10.1002/sim.6050. Epub 2013 Dec 8.
In vitro fertilization (IVF) is an increasingly common method of assisted reproductive technology. Because of the careful observation and follow-up required as part of the procedure, IVF studies provide an ideal opportunity to identify and assess clinical and demographic factors along with environmental exposures that may impact successful reproduction. A major challenge in analyzing data from IVF studies is handling the complexity and multiplicity of outcome, resulting from both multiple opportunities for pregnancy loss within a single IVF cycle in addition to multiple IVF cycles. To date, most evaluations of IVF studies do not make use of full data because of its complex structure. In this paper, we develop statistical methodology for analysis of IVF data with multiple cycles and possibly multiple failure types observed for each individual. We develop a general analysis framework based on a generalized linear modeling formulation that allows implementation of various types of models including shared frailty models, failure-specific frailty models, and transitional models, using standard software. We apply our methodology to data from an IVF study conducted at the Brigham and Women's Hospital, Massachusetts. We also summarize the performance of our proposed methods on the basis of a simulation study.
体外受精(IVF)是一种越来越常见的辅助生殖技术方法。由于该过程需要仔细观察和随访,因此 IVF 研究提供了一个理想的机会,可以识别和评估可能影响成功繁殖的临床和人口统计学因素以及环境暴露因素。分析 IVF 研究数据的主要挑战是处理由于单个 IVF 周期内多次妊娠丢失以及多个 IVF 周期而导致的结果的复杂性和多重性。迄今为止,由于其复杂的结构,大多数 IVF 研究的评估都没有充分利用全部数据。在本文中,我们针对具有多个周期和每个个体可能具有多种失败类型的 IVF 数据开发了统计分析方法。我们基于广义线性建模公式开发了一个通用分析框架,该框架允许使用标准软件实现各种类型的模型,包括共享脆弱性模型、特定失败脆弱性模型和过渡模型。我们将我们的方法应用于在马萨诸塞州布莱根妇女医院进行的 IVF 研究的数据。我们还根据模拟研究总结了我们提出的方法的性能。