Suppr超能文献

RNA-seq 差异表达研究:更多的序列还是更多的重复?

RNA-seq differential expression studies: more sequence or more replication?

机构信息

Institute of Genomics and Systems Biology, Committee on Development, Regeneration, and Stem Cell Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.

出版信息

Bioinformatics. 2014 Feb 1;30(3):301-4. doi: 10.1093/bioinformatics/btt688. Epub 2013 Dec 6.

Abstract

MOTIVATION

RNA-seq is replacing microarrays as the primary tool for gene expression studies. Many RNA-seq studies have used insufficient biological replicates, resulting in low statistical power and inefficient use of sequencing resources.

RESULTS

We show the explicit trade-off between more biological replicates and deeper sequencing in increasing power to detect differentially expressed (DE) genes. In the human cell line MCF7, adding more sequencing depth after 10 M reads gives diminishing returns on power to detect DE genes, whereas adding biological replicates improves power significantly regardless of sequencing depth. We also propose a cost-effectiveness metric for guiding the design of large-scale RNA-seq DE studies. Our analysis showed that sequencing less reads and performing more biological replication is an effective strategy to increase power and accuracy in large-scale differential expression RNA-seq studies, and provided new insights into efficient experiment design of RNA-seq studies.

AVAILABILITY AND IMPLEMENTATION

The code used in this paper is provided on: http://home.uchicago.edu/∼jiezhou/replication/. The expression data is deposited in the Gene Expression Omnibus under the accession ID GSE51403.

摘要

动机

RNA-seq 正在取代微阵列成为基因表达研究的主要工具。许多 RNA-seq 研究使用的生物学重复样本不足,导致统计功效低,测序资源利用效率低下。

结果

我们展示了在增加检测差异表达(DE)基因的功效方面,更多生物学重复和更深测序之间的明确权衡。在人类细胞系 MCF7 中,在达到 1000 万读长后增加测序深度对检测 DE 基因的功效回报递减,而增加生物学重复无论测序深度如何都能显著提高功效。我们还提出了一种成本效益指标,用于指导大规模 RNA-seq DE 研究的设计。我们的分析表明,在大规模差异表达 RNA-seq 研究中,减少测序读长并进行更多生物学重复是一种增加功效和准确性的有效策略,并为 RNA-seq 研究的实验设计提供了新的见解。

可用性和实施

本文中使用的代码可在:http://home.uchicago.edu/∼jiezhou/replication/ 获得。表达数据已在基因表达综合数据库中以 accession ID GSE51403 进行了存储。

相似文献

6
Calculating sample size estimates for RNA sequencing data.计算RNA测序数据的样本量估计值。
J Comput Biol. 2013 Dec;20(12):970-8. doi: 10.1089/cmb.2012.0283. Epub 2013 Aug 20.
9

引用本文的文献

本文引用的文献

4
Differential expression in RNA-seq: a matter of depth.RNA-seq 中的差异表达:深度的问题。
Genome Res. 2011 Dec;21(12):2213-23. doi: 10.1101/gr.124321.111. Epub 2011 Sep 8.
7
Design and validation issues in RNA-seq experiments.RNA-seq 实验中的设计和验证问题。
Brief Bioinform. 2011 May;12(3):280-7. doi: 10.1093/bib/bbr004. Epub 2011 Apr 15.
8
RNA sequencing: advances, challenges and opportunities.RNA 测序:进展、挑战和机遇。
Nat Rev Genet. 2011 Feb;12(2):87-98. doi: 10.1038/nrg2934. Epub 2010 Dec 30.
9
The developmental transcriptome of Drosophila melanogaster.黑腹果蝇的发育转录组。
Nature. 2011 Mar 24;471(7339):473-9. doi: 10.1038/nature09715. Epub 2010 Dec 22.
10
From RNA-seq reads to differential expression results.从 RNA-seq 读取到差异表达结果。
Genome Biol. 2010;11(12):220. doi: 10.1186/gb-2010-11-12-220. Epub 2010 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验