Suppr超能文献

计算机辅助检测和定量分析 CT 扫描中的空洞性肺结核。

Computer-aided detection and quantification of cavitary tuberculosis from CT scans.

机构信息

Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 20892.

出版信息

Med Phys. 2013 Nov;40(11):113701. doi: 10.1118/1.4824979.

Abstract

PURPOSE

To present a computer-aided detection tool for identifying, quantifying, and evaluating tuberculosis (TB) cavities in the infected lungs from computed tomography (CT) scans.

METHODS

The authors' proposed method is based on a novel shape-based automated detection algorithm on CT scans followed by a fuzzy connectedness (FC) delineation procedure. In order to assess interaction between cavities and airways, the authors first roughly identified air-filled structures (airway, cavities, esophagus, etc.) by thresholding over Hounsfield unit of CT image. Then, airway and cavity structure detection was conducted within the support vector machine classification algorithm. Once airway and cavities were detected automatically, the authors extracted airway tree using a hybrid multiscale approach based on novel affinity relations within the FC framework and segmented cavities using intensity-based FC algorithm. At final step, the authors refined airway structures within the local regions of FC with finer control. Cavity segmentation results were compared to the reference truths provided by expert radiologists and cavity formation was tracked longitudinally from serial CT scans through shape and volume information automatically determined through the authors' proposed system. Morphological evolution of the cavitary TB were analyzed accordingly with this process. Finally, the authors computed the minimum distance between cavity surface and nearby airway structures by using the linear time distance transform algorithm to explore potential role of airways in cavity formation and morphological evolution.

RESULTS

The proposed methodology was qualitatively and quantitatively evaluated on pulmonary CT images of rabbits experimentally infected with TB, and multiple markers such as cavity volume, cavity surface area, minimum distance from cavity surface to the nearest bronchial-tree, and longitudinal change of these markers (namely, morphological evolution of cavities) were determined precisely. While accuracy of the authors' cavity detection algorithm was 94.61%, airway detection part of the proposed methodology showed even higher performance by 99.8%. Dice similarity coefficients for cavitary segmentation experiments were found to be approximately 99.0% with respect to the reference truths provided by two expert radiologists (blinded to their evaluations). Moreover, the authors noted that volume derived from the authors' segmentation method was highly correlated with those provided by the expert radiologists (R(2) = 0.99757 and R(2) = 0.99496, p < 0.001, with respect to the observer 1 and observer 2) with an interobserver agreement of 98%. The authors quantitatively confirmed that cavity formation was positioned by the nearby bronchial-tree after exploring the respective spatial positions based on the minimum distance measurement. In terms of efficiency, the core algorithms take less than 2 min on a linux machine with 3.47 GHz CPU and 24 GB memory.

CONCLUSION

The authors presented a fully automatic method for cavitary TB detection, quantification, and evaluation. The performance of every step of the algorithm was qualitatively and quantitatively assessed. With the proposed method, airways and cavities were automatically detected and subsequently delineated in high accuracy with heightened efficiency. Furthermore, not only morphological information of cavities were obtained through the authors' proposed framework, but their spatial relation to airways, and longitudinal analysis was also provided to get further insight on cavity formation in tuberculosis disease. To the authors' best of knowledge, this is the first study in computerized analysis of cavitary tuberculosis from CT scans.

摘要

目的

介绍一种计算机辅助检测工具,用于从 CT 扫描中识别、量化和评估感染肺部的结核空洞。

方法

作者提出的方法基于一种新的基于形状的自动检测算法,然后是模糊连接(FC)描绘过程。为了评估空洞与气道之间的相互作用,作者首先通过对 CT 图像的体素进行阈值处理,大致识别出含气结构(气道、空洞、食管等)。然后,在支持向量机分类算法中进行气道和空洞结构的检测。一旦气道和空洞自动检测到,作者就使用基于新型亲和力关系的混合多尺度方法从 FC 框架中提取气道树,并使用基于强度的 FC 算法分割空洞。在最后一步中,作者使用更精细的局部区域控制来细化气道结构。将空洞分割结果与专家放射科医生提供的参考真值进行比较,并通过作者提出的系统自动确定的形状和体积信息,从系列 CT 扫描中纵向跟踪空洞的形成。然后,通过使用线性时间距离变换算法计算空洞表面与附近气道结构之间的最小距离,来探索气道在空洞形成和形态演变中的潜在作用。

结果

在实验性感染结核分枝杆菌的兔的肺部 CT 图像上对提出的方法进行了定性和定量评估,并精确地确定了多个标记物,如空洞体积、空洞表面积、空洞表面到最近支气管树的最小距离,以及这些标记物的纵向变化(即空洞的形态演变)。虽然作者的空洞检测算法的准确率为 94.61%,但该方法的气道检测部分的性能更高,准确率为 99.8%。空洞分割实验的 Dice 相似系数与两位专家放射科医生提供的参考真值(对其评估不知情)相比,约为 99.0%。此外,作者注意到,作者的分割方法得出的体积与专家放射科医生提供的体积高度相关(与观察者 1 和观察者 2 相比,R(2)分别为 0.99757 和 0.99496,p < 0.001),观察者间的一致性为 98%。作者通过基于最小距离测量的位置探索,定量证实了空洞的形成是由附近的支气管树定位的。在效率方面,核心算法在具有 3.47GHz CPU 和 24GB 内存的 Linux 机器上运行不到 2 分钟。

结论

作者提出了一种用于空洞性结核检测、定量和评估的全自动方法。算法的每一步的性能都进行了定性和定量评估。通过提出的方法,可以以高精度和高效率自动检测和随后描绘气道和空洞。此外,作者的框架不仅提供了空洞的形态信息,还提供了它们与气道的空间关系以及纵向分析,以进一步深入了解结核病中空洞的形成。据作者所知,这是首次从 CT 扫描中对空洞性肺结核进行计算机化分析的研究。

相似文献

10
Smart spotting of pulmonary TB cavities using CT images.利用 CT 图像智能检测肺结核空洞。
Comput Math Methods Med. 2013;2013:864854. doi: 10.1155/2013/864854. Epub 2013 Dec 3.

引用本文的文献

6
Preclinical Efficacy Testing of New Drug Candidates.新药候选物的临床前疗效测试。
Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0034-2017.

本文引用的文献

1
Incorporating User Input in Template-Based Segmentation.将用户输入纳入基于模板的分割中。
Proc IEEE Int Symp Biomed Imaging. 2011 Mar-Apr;2011:1434-1437. doi: 10.1109/ISBI.2011.5872669.
3
Tuberculosis.肺结核
N Engl J Med. 2013 Feb 21;368(8):745-55. doi: 10.1056/NEJMra1200894.
9
Computer-assisted detection of infectious lung diseases: a review.计算机辅助检测传染性肺病:综述。
Comput Med Imaging Graph. 2012 Jan;36(1):72-84. doi: 10.1016/j.compmedimag.2011.06.002. Epub 2011 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验