Suppr超能文献

CT 图像中异常肺部的分割与图像分析:当前方法、挑战及未来趋势

Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends.

作者信息

Mansoor Awais, Bagci Ulas, Foster Brent, Xu Ziyue, Papadakis Georgios Z, Folio Les R, Udupa Jayaram K, Mollura Daniel J

机构信息

From the Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md.

出版信息

Radiographics. 2015 Jul-Aug;35(4):1056-76. doi: 10.1148/rg.2015140232.

Abstract

The computer-based process of identifying the boundaries of lung from surrounding thoracic tissue on computed tomographic (CT) images, which is called segmentation, is a vital first step in radiologic pulmonary image analysis. Many algorithms and software platforms provide image segmentation routines for quantification of lung abnormalities; however, nearly all of the current image segmentation approaches apply well only if the lungs exhibit minimal or no pathologic conditions. When moderate to high amounts of disease or abnormalities with a challenging shape or appearance exist in the lungs, computer-aided detection systems may be highly likely to fail to depict those abnormal regions because of inaccurate segmentation methods. In particular, abnormalities such as pleural effusions, consolidations, and masses often cause inaccurate lung segmentation, which greatly limits the use of image processing methods in clinical and research contexts. In this review, a critical summary of the current methods for lung segmentation on CT images is provided, with special emphasis on the accuracy and performance of the methods in cases with abnormalities and cases with exemplary pathologic findings. The currently available segmentation methods can be divided into five major classes: (a) thresholding-based, (b) region-based, (c) shape-based, (d) neighboring anatomy-guided, and (e) machine learning-based methods. The feasibility of each class and its shortcomings are explained and illustrated with the most common lung abnormalities observed on CT images. In an overview, practical applications and evolving technologies combining the presented approaches for the practicing radiologist are detailed.

摘要

在计算机断层扫描(CT)图像上从周围胸部组织中识别肺边界的基于计算机的过程,即分割,是放射学肺部图像分析中至关重要的第一步。许多算法和软件平台提供用于量化肺部异常的图像分割程序;然而,几乎所有当前的图像分割方法仅在肺部表现出极少或无病理状况时才适用良好。当肺部存在中度至大量疾病或具有挑战性形状或外观的异常时,由于分割方法不准确,计算机辅助检测系统很可能无法描绘出那些异常区域。特别是,诸如胸腔积液、实变和肿块等异常常常导致肺分割不准确,这极大地限制了图像处理方法在临床和研究环境中的应用。在本综述中,对当前CT图像上肺分割方法进行了批判性总结,特别强调了这些方法在有异常情况和有典型病理表现的情况下的准确性和性能。当前可用的分割方法可分为五大类:(a)基于阈值的方法,(b)基于区域的方法,(c)基于形状的方法,(d)基于相邻解剖结构引导的方法,以及(e)基于机器学习的方法。对每一类方法的可行性及其缺点进行了解释,并结合CT图像上观察到的最常见肺部异常进行了说明。在概述中,详细介绍了结合所提出方法的实际应用和不断发展的技术,供放射科医生参考。

相似文献

2
Automated segmentation of lungs with severe interstitial lung disease in CT.
Med Phys. 2009 Oct;36(10):4592-9. doi: 10.1118/1.3222872.
3
Computer analysis of computed tomography scans of the lung: a survey.
IEEE Trans Med Imaging. 2006 Apr;25(4):385-405. doi: 10.1109/TMI.2005.862753.
4
An edge-region force guided active shape approach for automatic lung field detection in chest radiographs.
Comput Med Imaging Graph. 2012 Sep;36(6):452-63. doi: 10.1016/j.compmedimag.2012.04.005. Epub 2012 May 18.
5
Computerized detection of diffuse lung disease in MDCT: the usefulness of statistical texture features.
Phys Med Biol. 2009 Nov 21;54(22):6881-99. doi: 10.1088/0031-9155/54/22/009. Epub 2009 Oct 28.
8
Atlas-driven lung lobe segmentation in volumetric X-ray CT images.
IEEE Trans Med Imaging. 2006 Jan;25(1):1-16. doi: 10.1109/TMI.2005.859209.
9
Lung segmentation from CT with severe pathologies using anatomical constraints.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):804-11. doi: 10.1007/978-3-319-10404-1_100.
10
Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi.
IEEE Trans Med Imaging. 2013 Feb;32(2):210-22. doi: 10.1109/TMI.2012.2219881. Epub 2012 Sep 20.

引用本文的文献

1
Diaphragm Position on Chest Radiograph to Estimate Lung Volume in Neonates.
JAMA Pediatr. 2025 Jul 21. doi: 10.1001/jamapediatrics.2025.2108.
2
A concept for fully automated segmentation of bone in ultrasound imaging.
Sci Rep. 2025 Mar 8;15(1):8124. doi: 10.1038/s41598-025-92380-3.
3
BounTI (boundary-preserving threshold iteration): A user-friendly tool for automatic hard tissue segmentation.
J Anat. 2024 Dec;245(6):829-841. doi: 10.1111/joa.14063. Epub 2024 May 17.
4
ROI extraction in corona virus (COVID 19) CT images using intuitionistic fuzzy edge detection.
Heliyon. 2024 Mar 16;10(6):e27798. doi: 10.1016/j.heliyon.2024.e27798. eCollection 2024 Mar 30.
5
MIS-Net: A deep learning-based multi-class segmentation model for CT images.
PLoS One. 2024 Mar 13;19(3):e0299970. doi: 10.1371/journal.pone.0299970. eCollection 2024.
6
Detection of spondylosis deformans in thoracolumbar and lumbar lateral X-ray images of dogs using a deep learning network.
Front Vet Sci. 2024 Feb 15;11:1334438. doi: 10.3389/fvets.2024.1334438. eCollection 2024.
7
Empowering PET: harnessing deep learning for improved clinical insight.
Eur Radiol Exp. 2024 Feb 7;8(1):17. doi: 10.1186/s41747-023-00413-1.
8
Accurate Reconstruction of Multiple Basis Images Directly From Dual Energy CT Data.
IEEE Trans Biomed Eng. 2024 Jul;71(7):2058-2069. doi: 10.1109/TBME.2024.3361382. Epub 2024 Jun 19.
9
GPU-accelerated lung CT segmentation based on level sets and texture analysis.
Sci Rep. 2024 Jan 16;14(1):1444. doi: 10.1038/s41598-024-51452-6.
10
Artificial Intelligence in Lung Cancer Screening: The Future Is Now.
Cancers (Basel). 2023 Aug 30;15(17):4344. doi: 10.3390/cancers15174344.

本文引用的文献

1
A generic approach to pathological lung segmentation.
IEEE Trans Med Imaging. 2014 Dec;33(12):2293-310. doi: 10.1109/TMI.2014.2337057. Epub 2014 Jul 8.
2
Recombinant human factor VIIa for alveolar hemorrhage following allogeneic stem cell transplantation.
Biol Blood Marrow Transplant. 2014 Jul;20(7):969-78. doi: 10.1016/j.bbmt.2014.03.015. Epub 2014 Mar 20.
3
Spatially constrained random walk approach for accurate estimation of airway wall surfaces.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):559-66. doi: 10.1007/978-3-642-40763-5_69.
4
AUTOMATIC QUANTIFICATION OF TREE-IN-BUD PATTERNS FROM CT SCANS.
Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1459-1462. doi: 10.1109/ISBI.2012.6235846.
5
Computer-aided detection and quantification of cavitary tuberculosis from CT scans.
Med Phys. 2013 Nov;40(11):113701. doi: 10.1118/1.4824979.
7
Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review.
Phys Med Biol. 2013 Sep 7;58(17):R187-220. doi: 10.1088/0031-9155/58/17/R187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验