Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, 225009, China,
Mol Genet Genomics. 2014 Feb;289(1):1-9. doi: 10.1007/s00438-013-0797-x. Epub 2013 Dec 10.
The tetracyclic diterpenoid carboxylic acids, gibberellins (GAs), orchestrate a broad spectrum of biological programs. In nature, GAs or GA-like substance is produced in bacteria, fungi, and plants. The function of GAs in microorganisms remains largely unknown. Phytohormones GAs mediate diverse growth and developmental processes through the life cycle of plants. The GA biosynthetic and metabolic pathways in bacteria, fungi, and plants are remarkably divergent. In vascular plants, phytohormone GA, receptor GID1, and repressor DELLA shape the GA-GID1-DELLA module in GA signaling cascade. Sequence reshuffling, functional divergence, and adaptive selection are main driving forces during the evolution of GA pathway components. The GA-GID1-DELLA complex interacts with second messengers and other plant hormones to integrate environmental and endogenous cues, which is beneficial to phytohormones homeostasis and other biological events. In this review, we first briefly describe GA metabolism pathway, signaling perception, and its second messengers. Then, we examine the evolution of GA pathway genes. Finally, we focus on reviewing the crosstalk between GA-GID1-DELLA module and phytohormones. Deciphering mechanisms underlying plant hormonal interactions are not only beneficial to addressing basic biological questions, but also have practical implications for developing crops with ideotypes to meet the future demand.
四环二萜羧酸类化合物赤霉素(GAs)调控着广泛的生物学程序。在自然界中,GAs 或类似 GA 的物质由细菌、真菌和植物产生。GA 在微生物中的功能在很大程度上仍不清楚。植物激素 GAs 通过植物的生命周期介导多样化的生长和发育过程。细菌、真菌和植物中的 GA 生物合成和代谢途径显著不同。在维管植物中,植物激素 GA、受体 GID1 和抑制物 DELLA 形成 GA 信号级联中的 GA-GID1-DELLA 模块。序列重排、功能分化和适应性选择是 GA 途径成分进化的主要驱动力。GA-GID1-DELLA 复合物与第二信使和其他植物激素相互作用,整合环境和内源性信号,有利于植物激素的动态平衡和其他生物学事件。在这篇综述中,我们首先简要描述 GA 代谢途径、信号感知及其第二信使。然后,我们研究了 GA 途径基因的进化。最后,我们重点回顾了 GA-GID1-DELLA 模块与植物激素之间的串扰。解析植物激素相互作用的机制不仅有助于解决基本的生物学问题,而且对开发具有理想型的作物以满足未来的需求具有实际意义。