Suppr超能文献

用于近似贝叶斯计算(ABC)模型选择的摘要统计量半自动选择

Semi-automatic selection of summary statistics for ABC model choice.

作者信息

Prangle Dennis, Fearnhead Paul, Cox Murray P, Biggs Patrick J, French Nigel P

出版信息

Stat Appl Genet Mol Biol. 2014 Feb;13(1):67-82. doi: 10.1515/sagmb-2013-0012.

Abstract

A central statistical goal is to choose between alternative explanatory models of data. In many modern applications, such as population genetics, it is not possible to apply standard methods based on evaluating the likelihood functions of the models, as these are numerically intractable. Approximate Bayesian computation (ABC) is a commonly used alternative for such situations. ABC simulates data x for many parameter values under each model, which is compared to the observed data x obs. More weight is placed on models under which S(x) is close to S(x obs), where S maps data to a vector of summary statistics. Previous work has shown the choice of S is crucial to the efficiency and accuracy of ABC. This paper provides a method to select good summary statistics for model choice. It uses a preliminary step, simulating many x values from all models and fitting regressions to this with the model as response. The resulting model weight estimators are used as S in an ABC analysis. Theoretical results are given to justify this as approximating low dimensional sufficient statistics. A substantive application is presented: choosing between competing coalescent models of demographic growth for Campylobacter jejuni in New Zealand using multi-locus sequence typing data.

摘要

一个核心统计目标是在数据的不同解释模型之间进行选择。在许多现代应用中,如群体遗传学,基于评估模型的似然函数应用标准方法是不可能的,因为这些方法在数值上难以处理。近似贝叶斯计算(ABC)是此类情况下常用的替代方法。ABC在每个模型下针对许多参数值模拟数据x,并将其与观测数据x_obs进行比较。对于使得S(x)接近S(x_obs)的模型给予更多权重,其中S将数据映射到一个汇总统计量向量。先前的工作表明S的选择对于ABC的效率和准确性至关重要。本文提供了一种为模型选择选择良好汇总统计量的方法。它使用一个初步步骤,从所有模型模拟许多x值,并以模型作为响应进行回归拟合。所得的模型权重估计值在ABC分析中用作S。给出了理论结果以证明这是对低维充分统计量的近似。还展示了一个实际应用:使用多位点序列分型数据在新西兰空肠弯曲菌的人口增长竞争合并模型之间进行选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验