Suppr超能文献

真核藻类染色体在酵母中的组装。

Assembly of eukaryotic algal chromosomes in yeast.

机构信息

Department of Synthetic Biology and Bioenergy, J, Craig Venter Institute, 10355 Science Center Dr,, San Diego, CA 92121, USA.

出版信息

J Biol Eng. 2013 Dec 10;7(1):30. doi: 10.1186/1754-1611-7-30.

Abstract

BACKGROUND

Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryotic DNA fragments was improved by addition of yeast replication origins every ~100 kb. Conversely, low G + C DNA is stable (up to at least 1.8 Mb) without adding supplemental yeast origins. It has not been previously tested whether addition of yeast replication origins similarly improves the yeast-based cloning of large (>150 kb) eukaryotic DNA with moderate G + C content. The model diatom Phaeodactylum tricornutum has an average G + C content of 48% and a 27.4 Mb genome sequence that has been assembled into chromosome-sized scaffolds making it an ideal test case for assembly and maintenance of eukaryotic chromosomes in yeast.

RESULTS

We present a modified chromosome assembly technique in which eukaryotic chromosomes as large as ~500 kb can be assembled from cloned ~100 kb fragments. We used this technique to clone fragments spanning P. tricornutum chromosomes 25 and 26 and to assemble these fragments into single, chromosome-sized molecules. We found that addition of yeast replication origins improved the cloning, assembly, and maintenance of the large chromosomes in yeast. Furthermore, purification of the fragments to be assembled by electroelution greatly increased assembly efficiency.

CONCLUSIONS

Entire eukaryotic chromosomes can be successfully cloned, maintained, and manipulated in yeast. These results highlight the improvement in assembly and maintenance afforded by including yeast replication origins in eukaryotic DNA with moderate G + C content (48%). They also highlight the increased efficiency of assembly that can be achieved by purifying fragments before assembly.

摘要

背景

合成基因组方法提供了独特的机会,可以利用强大的酵母和大肠杆菌遗传系统在将修饰的 DNA 返回到目标宿主之前组装和修饰染色体大小的分子。例如,整个 1Mb 的支原体(mycoides)染色体可以在酵母中稳定维持和操作,然后再移植回受体细胞。我们之前已经证明,在酵母中克隆大于约 150kb、高 G+C(55%)的原核 DNA 片段,可以通过在每 100kb 左右添加酵母复制起点来提高克隆效率。相反,低 G+C 的 DNA 是稳定的(高达至少 1.8Mb),不需要添加额外的酵母起源。以前尚未测试过添加酵母复制起点是否同样可以提高具有中等 G+C 含量(48%)的大于 150kb 的大型真核 DNA 在酵母中的克隆效率。模式硅藻三角褐指藻(Phaeodactylum tricornutum)的平均 G+C 含量为 48%,其 27.4Mb 基因组序列已组装成染色体大小的支架,使其成为在酵母中组装和维持真核染色体的理想测试案例。

结果

我们提出了一种改良的染色体组装技术,可将大小约 500kb 的真核染色体组装成克隆的约 100kb 片段。我们使用该技术克隆跨越三角褐指藻染色体 25 和 26 的片段,并将这些片段组装成单个染色体大小的分子。我们发现,添加酵母复制起点可以提高大型染色体在酵母中的克隆、组装和维持效率。此外,通过电泳洗脱纯化待组装的片段可以大大提高组装效率。

结论

整个真核染色体可以成功地在酵母中克隆、维持和操作。这些结果突出了在具有中等 G+C 含量(48%)的真核 DNA 中包含酵母复制起点可以提高组装和维持效率。它们还突出了在组装前通过纯化片段可以实现的组装效率的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65e2/4029449/628046232b98/1754-1611-7-30-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验