1] Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA [2] Department of Neurology and Neurological Sciences and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA.
Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan.
J Cereb Blood Flow Metab. 2014 Mar;34(3):441-9. doi: 10.1038/jcbfm.2013.215. Epub 2013 Dec 11.
Previous studies have shown that intraparenchymal transplantation of neural stem cells (NSCs) ameliorates neurologic deficits in animals with intracerebral hemorrhage (ICH). However, massive grafted cell death after transplantation, possibly caused by a hostile host brain environment, lessens the effectiveness of this approach. We focused on the effect of oxidative stress against grafted NSCs and hypothesized that conferring antioxidant properties to transplanted NSCs may overcome their death and enhance neuroprotection after ICH. Copper/zinc-superoxide dismutase (SOD1) is a specific antioxidant enzyme that counteracts superoxide anions. We investigated whether genetic manipulation to overexpress SOD1 enhances survival of grafted NSCs and accelerates amelioration of ICH. Neural stem cells that overexpress SOD1 were administered intracerebrally 3 days after ICH in a mouse model. Histologic and behavioral tests were examined after ICH. Copper/zinc-superoxide dismutase overexpression protected the grafted NSCs via a decrease in production of reactive oxygen species. This resulted in an increase in paracrine factors released by the NSCs, and an increase in surviving neurons in the striatum and a reduction in striatal atrophy. In addition, SOD1 overexpression showed progressive improvement in behavioral recovery. Our results suggest that enhanced antioxidative activity in NSCs improves efficacy of stem cell therapy for ICH.
先前的研究表明,脑内移植神经干细胞(NSCs)可改善脑出血(ICH)动物的神经功能缺损。然而,移植后大量的移植物细胞死亡,可能是由于宿主大脑环境恶劣所致,这降低了这种方法的效果。我们专注于氧化应激对移植的 NSCs 的影响,并假设赋予移植的 NSCs 抗氧化特性可能会克服其死亡,并在 ICH 后增强神经保护作用。铜/锌-超氧化物歧化酶(SOD1)是一种特异性抗氧化酶,可对抗超氧阴离子。我们研究了过表达 SOD1 是否通过增加移植的 NSCs 的存活并加速 ICH 的改善来遗传修饰。ICH 后 3 天,在小鼠模型中脑内给予过表达 SOD1 的神经干细胞。ICH 后进行组织学和行为学测试。SOD1 的过表达通过减少活性氧的产生来保护移植的 NSCs。这导致 NSCs 释放的旁分泌因子增加,纹状体中存活的神经元增加,纹状体萎缩减少。此外,SOD1 的过表达显示出行为恢复的逐渐改善。我们的结果表明,增强 NSCs 的抗氧化活性可提高干细胞治疗 ICH 的疗效。