Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , SP , Brazil.
Free Radic Res. 2014 Mar;48(3):357-70. doi: 10.3109/10715762.2013.871386. Epub 2014 Jan 7.
Highly electrophilic α-dicarbonyls such as diacetyl, methylglyoxal, 3-deoxyglucosone, and4,5-dioxovaleric acid have been characterized as secondary catabolites that can aggregate proteins and form DNA nucleobase adducts in several human maladies, including Alzheimer's disease, rheumatoid arthritis, diabetes, sepsis, renal failure, and respiratory distress syndrome. In vitro, diacetyl and methylglyoxal have also been shown to rapidly add up the peroxynitrite anion (k2 ~ 10(4)-10(5) M(-1) s(-1)), a potent biological nucleophile, oxidant and nitrosating agent, followed by carbon chain cleavage to carboxylic acids via acetyl radical intermediate that can modify amino acids. In this study, we used the amino acid derivatives Ac-Lys-OMe and Z-Lys-OMe and synthesized the tetrapeptides H-KALA-OH, Ac-KALA-OH, and H-K(Boc)ALA-OH to reveal the preferential Lys amino group targeted by acyl radical generated by the α-dicarbonyl/peroxynitrite system. The pH profiles of the reactions are bell-shaped, peaking at approximately 7.5; hence, they are close to the pKa values of ONOOH and of the catalytic H2PO4(-) anion. RP-HPLC and ESI-MS analyses of reaction products confirmed (α)N- and (ϵ)N-acetylation of Lys by diacetyl as well as acetylation and formylation by methylglyoxal, with preference for the α-amino group. These data suggest the possibility of radical acylation of proteins in epigenetic processes, where enzymatic acetylation of these biomolecules is a well-documented event, recently reported to be as critical to the cell cycle as phosphorylation. Also noteworthy is the observed formylation of L-Lys containing peptides by methylglyoxal never reported to occur in amino acid residues of peptides and proteins.
高度亲电的α-二羰基化合物,如双乙酰、甲基乙二醛、3-脱氧葡萄糖酮和 4,5-二氧戊酸,已被确定为次级代谢产物,可在包括阿尔茨海默病、类风湿性关节炎、糖尿病、败血症、肾衰竭和呼吸窘迫综合征在内的几种人类疾病中聚集蛋白质并形成 DNA 碱基加合物。体外研究还表明,双乙酰和甲基乙二醛还可以快速与过氧亚硝酸盐阴离子(k2~10(4)-10(5) M(-1) s(-1))反应,而过氧亚硝酸盐阴离子是一种有效的生物亲核试剂、氧化剂和亚硝化剂,随后通过乙酰基自由基中间体进行碳链裂解,生成羧酸,可修饰氨基酸。在这项研究中,我们使用氨基酸衍生物 Ac-Lys-OMe 和 Z-Lys-OMe,并合成了四肽 H-KALA-OH、Ac-KALA-OH 和 H-K(Boc)ALA-OH,以揭示α-二羰基化合物/过氧亚硝酸盐体系产生的酰基自由基优先靶向赖氨酸的氨基。反应的 pH 曲线呈钟形,峰值约为 7.5;因此,它们接近于 ONOOH 和催化 H2PO4(-)阴离子的 pKa 值。反应产物的反相高效液相色谱(RP-HPLC)和电喷雾质谱(ESI-MS)分析证实了双乙酰对 Lys 的α-N 和ε-N 乙酰化以及甲基乙二醛的乙酰化和甲酰化,优先作用于α-氨基。这些数据表明,在表观遗传过程中,蛋白质可能发生自由基酰化,其中这些生物分子的酶促乙酰化是一个有充分记录的事件,最近的研究表明其对细胞周期的重要性与磷酸化相当。值得注意的是,甲基乙二醛对含有 L-赖氨酸的肽的甲酰化作用从未在肽和蛋白质的氨基酸残基中报道过。