Suppr超能文献

将空间相关性纳入多物种平均场模型。

Incorporating spatial correlations into multispecies mean-field models.

作者信息

Markham Deborah C, Simpson Matthew J, Maini Philip K, Gaffney Eamonn A, Baker Ruth E

机构信息

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom.

School of Mathematical Sciences, Queensland University of Technology, G.P.O. Box 2434, Brisbane, Queensland 4001, Australia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052713. doi: 10.1103/PhysRevE.88.052713. Epub 2013 Nov 20.

Abstract

In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modeling interactions between such species, we often make use of the mean-field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean-field approximation is only used in appropriate settings. In circumstances where the mean-field approximation is unsuitable, we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper, we provide a method that overcomes many of the failures of the mean-field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multispecies case and show results specific to a two-species problem. We compare averaged discrete results to both the mean-field approximation and our improved method, which incorporates spatial correlations. We note that the mean-field approximation fails dramatically in some cases, predicting very different behavior from that seen upon averaging multiple realizations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behavior in all cases, thus providing a more reliable modeling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.

摘要

在生物学中,我们经常观察到同一环境中存在不同的物种。例如,肿瘤中有多种细胞类型,或者不同的动物物种可能占据给定的栖息地。在对这些物种之间的相互作用进行建模时,我们常常采用平均场近似,即忽略个体位置之间的空间相关性。虽然这种近似在某些情况下成立,但并非总是如此,必须注意确保仅在适当的情况下使用平均场近似。在平均场近似不适用的情况下,我们需要纳入个体空间分布的信息,而这并非易事。在本文中,我们提供了一种方法,该方法克服了平均场近似在多物种格点体积排除生死运动过程中的许多缺陷。我们通过纳入格点占据相关性的偏微分方程描述,明确考虑了个体分布的空间信息。我们展示了如何推导多物种情况下的这些方程,并给出了一个双物种问题的具体结果。我们将平均离散结果与平均场近似以及我们纳入空间相关性的改进方法进行了比较。我们注意到,平均场近似在某些情况下会显著失效,预测的行为与对离散系统的多个实现进行平均时所观察到的行为截然不同。相比之下,我们的改进方法在所有情况下都与平均离散行为具有极好的一致性,从而提供了一个更可靠的建模框架。此外,我们的方法是易于处理的,因为由此产生的偏微分方程可以使用标准数值技术有效地求解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验