Tremblay Nicolas, Barrat Alain, Forest Cary, Nornberg Mark, Pinton Jean-François, Borgnat Pierre
Physics Laboratory, ENS Lyon, Université de Lyon, CNRS UMR 5672, Lyon, France.
Aix Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France and Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France and Data Science Laboratory, Institute for Scientific Interchange (ISI) Foundation, Torino, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052812. doi: 10.1103/PhysRevE.88.052812. Epub 2013 Nov 25.
The increasing availability of time- and space-resolved data describing human activities and interactions gives insights into both static and dynamic properties of human behavior. In practice, nevertheless, real-world data sets can often be considered as only one realization of a particular event. This highlights a key issue in social network analysis: the statistical significance of estimated properties. In this context, we focus here on the assessment of quantitative features of specific subset of nodes in empirical networks. We present a method of statistical resampling based on bootstrapping groups of nodes under constraints within the empirical network. The method enables us to define acceptance intervals for various null hypotheses concerning relevant properties of the subset of nodes under consideration in order to characterize by a statistical test its behavior as "normal" or not. We apply this method to a high-resolution data set describing the face-to-face proximity of individuals during two colocated scientific conferences. As a case study, we show how to probe whether colocating the two conferences succeeded in bringing together the two corresponding groups of scientists.
描述人类活动和互动的时空分辨数据越来越容易获取,这使我们能够洞察人类行为的静态和动态特性。然而,在实际中,现实世界的数据集通常只能被视为特定事件的一种实现。这凸显了社交网络分析中的一个关键问题:估计属性的统计显著性。在此背景下,我们在此专注于评估实证网络中特定节点子集的定量特征。我们提出了一种基于对实证网络内受约束的节点组进行自助抽样的统计重采样方法。该方法使我们能够为关于所考虑节点子集的相关属性的各种零假设定义接受区间,以便通过统计检验来表征其行为是否“正常”。我们将此方法应用于一个高分辨率数据集,该数据集描述了在两个同地举行的科学会议期间个人的面对面接近情况。作为一个案例研究,我们展示了如何探究将两个会议安排在同一地点是否成功地使两组相应的科学家聚集在一起。