De Vico Fallani Fabrizio, Nicosia Vincenzo, Latora Vito, Chavez Mario
CNRS UMR-7225, Hôpital de la Pitié-Salpêtrière, Paris, France.
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012802. doi: 10.1103/PhysRevE.89.012802. Epub 2014 Jan 9.
Parametric resampling schemes have been recently introduced in complex network analysis with the aim of assessing the statistical significance of graph clustering and the robustness of community partitions. We propose here a method to replicate structural features of complex networks based on the non-parametric resampling of the transition matrix associated with an unbiased random walk on the graph. We test this bootstrapping technique on synthetic and real-world modular networks and we show that the ensemble of replicates obtained through resampling can be used to improve the performance of standard spectral algorithms for community detection.
参数重采样方案最近已被引入复杂网络分析中,目的是评估图聚类的统计显著性和社区划分的稳健性。我们在此提出一种基于与图上无偏随机游走相关的转移矩阵的非参数重采样来复制复杂网络结构特征的方法。我们在合成和真实世界的模块化网络上测试了这种自举技术,并表明通过重采样获得的复制集合可用于提高用于社区检测的标准谱算法的性能。