Suppr超能文献

通过应用四维隐马尔可夫随机场模型改进纵向灰质和白质萎缩评估。

Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model.

作者信息

Dwyer Michael G, Bergsland Niels, Zivadinov Robert

机构信息

Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Science, University at Buffalo, State University of New York, Buffalo, NY, USA.

Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Science, University at Buffalo, State University of New York, Buffalo, NY, USA.

出版信息

Neuroimage. 2014 Apr 15;90:207-17. doi: 10.1016/j.neuroimage.2013.12.004. Epub 2013 Dec 12.

Abstract

SIENA and similar techniques have demonstrated the utility of performing "direct" measurements as opposed to post-hoc comparison of cross-sectional data for the measurement of whole brain (WB) atrophy over time. However, gray matter (GM) and white matter (WM) atrophy are now widely recognized as important components of neurological disease progression, and are being actively evaluated as secondary endpoints in clinical trials. Direct measures of GM/WM change with advantages similar to SIENA have been lacking. We created a robust and easily-implemented method for direct longitudinal analysis of GM/WM atrophy, SIENAX multi-time-point (SIENAX-MTP). We built on the basic halfway-registration and mask composition components of SIENA to improve the raw output of FMRIB's FAST tissue segmentation tool. In addition, we created LFAST, a modified version of FAST incorporating a 4th dimension in its hidden Markov random field model in order to directly represent time. The method was validated by scan-rescan, simulation, comparison with SIENA, and two clinical effect size comparisons. All validation approaches demonstrated improved longitudinal precision with the proposed SIENAX-MTP method compared to SIENAX. For GM, simulation showed better correlation with experimental volume changes (r=0.992 vs. 0.941), scan-rescan showed lower standard deviations (3.8% vs. 8.4%), correlation with SIENA was more robust (r=0.70 vs. 0.53), and effect sizes were improved by up to 68%. Statistical power estimates indicated a potential drop of 55% in the number of subjects required to detect the same treatment effect with SIENAX-MTP vs. SIENAX. The proposed direct GM/WM method significantly improves on the standard SIENAX technique by trading a small amount of bias for a large reduction in variance, and may provide more precise data and additional statistical power in longitudinal studies.

摘要

SIENA及类似技术已证明,与事后比较横断面数据相比,进行“直接”测量对于随时间测量全脑(WB)萎缩具有实用性。然而,灰质(GM)和白质(WM)萎缩如今已被广泛认为是神经疾病进展的重要组成部分,并且正在作为临床试验的次要终点进行积极评估。一直缺乏具有与SIENA类似优势的GM/WM变化的直接测量方法。我们创建了一种用于GM/WM萎缩直接纵向分析的强大且易于实施的方法,即SIENAX多时间点(SIENAX-MTP)方法。我们基于SIENA的基本半配准和掩码合成组件,以改进FMRIB的FAST组织分割工具的原始输出。此外,我们创建了LFAST,这是FAST的一个修改版本,在其隐马尔可夫随机场模型中纳入了第四维以直接表示时间。该方法通过重扫、模拟、与SIENA比较以及两项临床效应大小比较进行了验证。所有验证方法均表明,与SIENAX相比,所提出的SIENAX-MTP方法具有更高的纵向精度。对于GM,模拟显示与实验体积变化的相关性更好(r = 0.992对0.941),重扫显示标准差更低(分别为3.8%和8.4%),与SIENA的相关性更强(r = 0.70对0.53),效应大小提高了68%。统计功效估计表明,与SIENAX相比,使用SIENAX-MTP检测相同治疗效果所需的受试者数量可能会减少55%。所提出的直接GM/WM方法通过以少量偏差换取方差的大幅降低,显著改进了标准SIENAX技术,并且可能在纵向研究中提供更精确的数据和额外的统计功效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验