From the Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (H.I.K., L.D.); Janssen Research & Development, Titusville, NJ (M.K., A.D.B.); Covance, Princeton, NJ (D.K.A., E.Y.); Biogen-Idec, Experimental Medicine, Cambridge, MA (J.C.C.); GSL Statistical Consulting, Ardmore, PA (G.S.L.); BVBA Bioconstat, Gent, Oostakker, Belgium (G.B.); The Burke Medical Research Institute, White Plains, NY (A.R.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (K.M.A., K.H., K.R.L.); Department of Neurology, University of Duisburg-Essen, Essen, Germany (K.H.); and The Feinstein Institute for Medical Research, Manhasset, NY (B.T.V.).
Stroke. 2014 Jan;45(1):200-4. doi: 10.1161/STROKEAHA.113.002296. Epub 2013 Dec 12.
Because robotic devices record the kinematics and kinetics of human movements with high resolution, we hypothesized that robotic measures collected longitudinally in patients after stroke would bear a significant relationship to standard clinical outcome measures and, therefore, might provide superior biomarkers.
In patients with moderate-to-severe acute ischemic stroke, we used clinical scales and robotic devices to measure arm movement 7, 14, 21, 30, and 90 days after the event at 2 clinical sites. The robots are interactive devices that measure speed, position, and force so that calculated kinematic and kinetic parameters could be compared with clinical assessments.
Among 208 patients, robotic measures predicted well the clinical measures (cross-validated R(2) of modified Rankin scale=0.60; National Institutes of Health Stroke Scale=0.63; Fugl-Meyer=0.73; Motor Power=0.75). When suitably scaled and combined by an artificial neural network, the robotic measures demonstrated greater sensitivity in measuring the recovery of patients from day 7 to day 90 (increased standardized effect=1.47).
These results demonstrate that robotic measures of motor performance will more than adequately capture outcome, and the altered effect size will reduce the required sample size. Reducing sample size will likely improve study efficiency.
由于机器人设备可以高精度地记录人体运动的运动学和动力学参数,我们假设在卒中后患者中进行纵向采集的机器人测量结果与标准临床结局测量具有显著相关性,因此可能提供更优的生物标志物。
在中重度急性缺血性卒患者中,我们在 2 个临床中心于事件后 7、14、21、30 和 90 天使用临床量表和机器人设备测量手臂运动。机器人是交互式设备,可测量速度、位置和力,以便比较计算出的运动学和动力学参数与临床评估。
在 208 例患者中,机器人测量结果很好地预测了临床测量结果(改良 Rankin 量表的交叉验证 R²=0.60;国立卫生研究院卒中量表=0.63;Fugl-Meyer=0.73;运动力量=0.75)。当通过人工神经网络进行适当的定标和组合时,机器人测量结果在测量患者从第 7 天到第 90 天的恢复情况时具有更高的灵敏度(增加的标准化效应=1.47)。
这些结果表明,运动性能的机器人测量将充分捕捉结果,并且改变的效应量将减少所需的样本量。减少样本量可能会提高研究效率。