Suppr超能文献

准确预测临床中风量表和改善机器人测量运动障碍的生物标志物。

Accurate prediction of clinical stroke scales and improved biomarkers of motor impairment from robotic measurements.

机构信息

Janssen Research & Development, Titusville, New Jersey, United States of America.

Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2021 Jan 29;16(1):e0245874. doi: 10.1371/journal.pone.0245874. eCollection 2021.

Abstract

OBJECTIVE

One of the greatest challenges in clinical trial design is dealing with the subjectivity and variability introduced by human raters when measuring clinical end-points. We hypothesized that robotic measures that capture the kinematics of human movements collected longitudinally in patients after stroke would bear a significant relationship to the ordinal clinical scales and potentially lead to the development of more sensitive motor biomarkers that could improve the efficiency and cost of clinical trials.

MATERIALS AND METHODS

We used clinical scales and a robotic assay to measure arm movement in 208 patients 7, 14, 21, 30 and 90 days after acute ischemic stroke at two separate clinical sites. The robots are low impedance and low friction interactive devices that precisely measure speed, position and force, so that even a hemiparetic patient can generate a complete measurement profile. These profiles were used to develop predictive models of the clinical assessments employing a combination of artificial ant colonies and neural network ensembles.

RESULTS

The resulting models replicated commonly used clinical scales to a cross-validated R2 of 0.73, 0.75, 0.63 and 0.60 for the Fugl-Meyer, Motor Power, NIH stroke and modified Rankin scales, respectively. Moreover, when suitably scaled and combined, the robotic measures demonstrated a significant increase in effect size from day 7 to 90 over historical data (1.47 versus 0.67).

DISCUSSION AND CONCLUSION

These results suggest that it is possible to derive surrogate biomarkers that can significantly reduce the sample size required to power future stroke clinical trials.

摘要

目的

临床试验设计中最大的挑战之一是处理人类评估者在测量临床终点时引入的主观性和可变性。我们假设,捕捉中风后患者纵向采集的人体运动运动学的机器人测量方法与有序的临床量表具有显著关系,并有可能开发出更敏感的运动生物标志物,从而提高临床试验的效率和成本。

材料和方法

我们在两个不同的临床地点,使用临床量表和机器人测定法,在急性缺血性中风后 7、14、21、30 和 90 天,测量了 208 例患者的手臂运动。机器人是低阻抗、低摩擦的交互式设备,能够精确测量速度、位置和力,即使是偏瘫患者也能生成完整的测量图。这些图用于通过人工蚁群和神经网络集合的组合来开发临床评估的预测模型。

结果

所得模型复制了常用的临床量表,交叉验证的 R2 分别为 0.73、0.75、0.63 和 0.60,用于 Fugl-Meyer、运动力量、NIH 中风和改良 Rankin 量表。此外,当适当缩放和组合时,机器人测量在从第 7 天到 90 天的时间内,与历史数据相比(1.47 与 0.67),效果大小显著增加。

讨论与结论

这些结果表明,有可能得出替代生物标志物,可以显著减少未来中风临床试验所需的样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/924f/7845999/920c5cf9d7ac/pone.0245874.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验