Christensen Anders N, Reichkendler Michala H, Larsen Rasmus, Auerbach Pernille, Højgaard Liselotte, Nielsen Henning B, Ploug Thorkil, Stallknecht Bente, Holm Søren
Departments of aClinical Physiology, Nuclear Medicine and PET bAnesthesiology, Rigshospitalet cDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen dDepartment of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
Nucl Med Commun. 2014 Apr;35(4):353-61. doi: 10.1097/MNM.0000000000000063.
We investigated the use of a simple calibration method to remove bias in previously proposed approaches to image-derived input functions (IDIFs) when used to calculate the metabolic uptake rate of glucose (K(m)) from dynamic [(18)F]-FDG PET scans of the thigh. Our objective was to obtain nonbiased, low-variance K(m) values without blood sampling.
We evaluated eight previously proposed IDIF methods. K(m) values derived from these IDIFs were compared with Km values calculated from the arterial blood samples (gold standard). We used linear regression to extract calibration parameters to remove bias. Following calibration, cross-validation and bootstrapping were used to estimate the mean square error and variance.
Three of the previously proposed methods failed mainly because of zero-crossings of the IDIF. The remaining five methods were improved by calibration, yielding unbiased Km values. The method with the lowest SD yielded an SD of 0.0017/min--that is, below 10% of the muscle K(m) value in this study.
Previously proposed IDIF methods can be improved by using a simple calibration procedure. The calibration procedure may be used in other studies, thus obviating the need for arterial blood sampling, once the calibration parameters have been established in a subgroup of participants. The method has potential for use in other parts of the body as it is robust with regard to partial volume effects.
我们研究了一种简单的校准方法,用于消除先前提出的图像衍生输入函数(IDIF)方法在用于从大腿动态[(18)F]-FDG PET扫描计算葡萄糖代谢摄取率(K(m))时的偏差。我们的目标是在不进行血样采集的情况下获得无偏差、低方差的K(m)值。
我们评估了八种先前提出的IDIF方法。将从这些IDIF得出的K(m)值与从动脉血样本计算得出的Km值(金标准)进行比较。我们使用线性回归来提取校准参数以消除偏差。校准后,使用交叉验证和自举法来估计均方误差和方差。
先前提出的三种方法主要由于IDIF的过零点而失败。其余五种方法通过校准得到改进,产生了无偏差的Km值。标准差最低的方法的标准差为0.0017/分钟,即低于本研究中肌肉K(m)值的10%。
先前提出的IDIF方法可通过使用简单的校准程序得到改进。一旦在一组参与者中确定了校准参数,该校准程序可用于其他研究,从而无需进行动脉血样采集。该方法由于对部分容积效应具有鲁棒性,因此有潜力用于身体的其他部位。