Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
Nanoscale. 2014;6(3):1580-8. doi: 10.1039/c3nr04853e.
Propulsion of chiral magnetic nanomotors powered by a rotating magnetic field is in the focus of the modern biomedical applications. This technology relies on strong interactions of dynamic and magnetic degrees of freedom of the system. Here we study in detail various experimentally observed regimes of the helical nanomotor orientation and propulsion depending on the actuation frequency, and establish the relation of these two properties to the remanent magnetization and geometry of the helical nanomotors. The theoretical predictions for the transition between the regimes and nanomotor orientation and propulsion speed are in excellent agreement with available experimental data. The proposed theory offers a few simple guidelines towards the optimal design of the magnetic nanomotors.
在现代生物医学应用中,受旋转磁场驱动的手性磁性纳米马达的推进受到了极大的关注。这项技术依赖于系统的动态和磁自由度之间的强相互作用。在这里,我们详细研究了在不同驱动频率下,螺旋纳米马达的取向和推进的各种实验观测状态,并建立了这两个特性与螺旋纳米马达的剩余磁化强度和几何形状之间的关系。理论预测与现有的实验数据之间存在极好的一致性,表明了在状态之间以及纳米马达的取向和推进速度之间的转变。所提出的理论为磁性纳米马达的优化设计提供了一些简单的指导原则。
Nanoscale. 2014
Adv Mater. 2018-4-10
ACS Nano. 2013-5-13
ACS Appl Mater Interfaces. 2015-11-18
Small. 2010-8-2
ACS Nano. 2025-7-15
PNAS Nexus. 2024-4-26
Eur Phys J Spec Top. 2023-6
Phys Rev Res. 2022-7
Front Robot AI. 2022-11-29
Micromachines (Basel). 2022-11-12
Trans Indian Natl Acad Eng. 2021-6
Eur Phys J E Soft Matter. 2022-2-21