From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia and.
J Biol Chem. 2014 Jan 31;289(5):2992-3000. doi: 10.1074/jbc.M113.539924. Epub 2013 Dec 12.
Plasma plasminogen is the precursor of the tumor angiogenesis inhibitor, angiostatin. Generation of angiostatin in blood involves activation of plasminogen to the serine protease plasmin and facilitated cleavage of two disulfide bonds and up to three peptide bonds in the kringle 5 domain of the protein. The mechanism of reduction of the two allosteric disulfides has been explored in this study. Using thiol-alkylating agents, mass spectrometry, and an assay for angiostatin formation, we show that the Cys(462)-Cys(541) disulfide bond is already cleaved in a fraction of plasma plasminogen and that this reduced plasminogen is the precursor for angiostatin formation. From the crystal structure of plasminogen, we propose that plasmin ligands such as phosphoglycerate kinase induce a conformational change in reduced kringle 5 that leads to attack by the Cys(541) thiolate anion on the Cys(536) sulfur atom of the Cys(512)-Cys(536) disulfide bond, resulting in reduction of the bond by thiol/disulfide exchange. Cleavage of the Cys(512)-Cys(536) allosteric disulfide allows further conformational change and exposure of the peptide backbone to proteolysis and angiostatin release. The Cys(462)-Cys(541) and Cys(512)-Cys(536) disulfides have -/+RHHook and -LHHook configurations, respectively, which are two of the 20 different measures of the geometry of a disulfide bond. Analysis of the structures of the known allosteric disulfide bonds identified six other bonds that have these configurations, and they share some functional similarities with the plasminogen disulfides. This suggests that the -/+RHHook and -LHHook disulfides, along with the -RHStaple bond, are potential allosteric configurations.
血浆纤溶酶原是肿瘤血管生成抑制剂血管抑素的前体。血液中血管抑素的生成涉及纤溶酶原到丝氨酸蛋白酶纤溶酶的激活,以及蛋白质kringle 5 结构域中二硫键和多达三个肽键的催化裂解。本研究探讨了减少两个变构二硫键的机制。使用巯基烷化剂、质谱和血管抑素形成测定法,我们表明血浆纤溶酶原的一部分已经裂解了 Cys(462)-Cys(541)二硫键,并且这种还原的纤溶酶原是血管抑素形成的前体。从纤溶酶原的晶体结构中,我们提出了这样的假设,即磷酸甘油酸激酶等纤溶酶配体诱导还原型kringle 5 发生构象变化,导致 Cys(541)硫醇阴离子攻击 Cys(512)-Cys(536)二硫键的 Cys(536)硫原子,导致通过硫醇/二硫键交换还原该键。Cys(512)-Cys(536)变构二硫键的裂解允许进一步的构象变化,并使肽骨架暴露于蛋白水解和血管抑素释放。Cys(462)-Cys(541)和 Cys(512)-Cys(536)二硫键分别具有 +/-RHHook 和 -LHHook 构型,这是二硫键 20 种不同几何结构的两种。对已知变构二硫键结构的分析确定了另外六个具有这些构型的键,它们与纤溶酶原二硫键具有一些功能相似性。这表明 +/-RHHook 和 -LHHook 二硫键以及 -RHStaple 键可能是变构构型。