Suppr超能文献

循环人工神经网络在生物医学应用中的非线性动态建模实现。

Implementation of recurrent artificial neural networks for nonlinear dynamic modeling in biomedical applications.

作者信息

Stošovic Miona V Andrejevic, Litovski Vanco B

机构信息

University of Niš, Faculty of Electronic Engineering, Niš - Serbia.

出版信息

Int J Artif Organs. 2013 Nov;36(11):833-42. doi: 10.5301/ijao.5000255. Epub 2013 Oct 2.

Abstract

Simulation is indispensable during the design of many biomedical prostheses that are based on fundamental electrical and electronic actions. However, simulation necessitates the use of adequate models. The main difficulties related to the modeling of such devices are their nonlinearity and dynamic behavior. Here we report the application of recurrent artificial neural networks for modeling of a nonlinear, two-terminal circuit equivalent to a specific implantable hearing device. The method is general in the sense that any nonlinear dynamic two-terminal device or circuit may be modeled in the same way. The model generated was successfully used for simulation and optimization of a driver (operational amplifier)-transducer ensemble. This confirms our claim that in addition to the proper design and optimization of the hearing actuator, optimization in the electronic domain, at the electronic driver circuit-to-actuator interface, should take place in order to achieve best performance of the complete hearing aid.

摘要

在许多基于基本电气和电子作用的生物医学假体设计过程中,模拟是必不可少的。然而,模拟需要使用适当的模型。与此类设备建模相关的主要困难在于其非线性和动态行为。在此,我们报告了循环人工神经网络在对一个等效于特定可植入听力设备的非线性双端电路进行建模中的应用。从任何非线性动态双端设备或电路都可以用相同方式建模的意义上来说,该方法具有通用性。所生成的模型成功用于一个驱动器(运算放大器) - 换能器组合的模拟和优化。这证实了我们的观点,即除了对听力促动器进行适当设计和优化之外,为了实现完整助听器的最佳性能,还应在电子领域、在电子驱动电路与促动器的接口处进行优化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验