Suppr超能文献

Modeling methodology for nonlinear physiological systems.

作者信息

Marmarelis V Z

机构信息

Department of Biomedical Engineering, University of Southern California, University Park, Los Angeles 90089-1451, USA.

出版信息

Ann Biomed Eng. 1997 Mar-Apr;25(2):239-51. doi: 10.1007/BF02648038.

Abstract

A general modeling approach for a broad class of nonlinear systems is presented that uses the concept of principal dynamic modes (PDMs). These PDMs constitute a filter bank whose outputs feed into a multi-input static nonlinearity of multinomial (polynomial) form to yield a general model for the broad class of Volterra systems. Because the practically obtainable models (from stimulus-response data) are of arbitrary order of nonlinearity, this approach is applicable to many nonlinear physiological systems heretofore beyond our methodological means. Two specific methods are proposed for the estimation of these PDMs and the associated nonlinearities from stimulus-response data. Method I uses eigendecomposition of a properly constructed matrix using the first two kernel estimates (obtained by existing methods). Method II uses a particular class of feedforward artificial neural networks with polynomial activation functions. The efficacy of these two methods is demonstrated with computer-simulated examples, and their relative performance is discussed. The advent of this approach promises a practicable solution to the vexing problem of modeling highly nonlinear physiological systems, provided that experimental data be available for reliable estimation of the requisite PDMs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验