Suppr超能文献

利用高密度 3D 图像配准技术检测常见人类面部形态变异的遗传关联性。

Detecting genetic association of common human facial morphological variation using high density 3D image registration.

机构信息

Human Functional Genetic Variation Group, CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China.

出版信息

PLoS Comput Biol. 2013;9(12):e1003375. doi: 10.1371/journal.pcbi.1003375. Epub 2013 Dec 5.

Abstract

Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ∼30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the IRF6 gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation.

摘要

人类面部形态是许多复杂特征的组合。对于常见面部形态变异的遗传基础知之甚少。现有的关联研究在很大程度上使用简单的地标距离作为面部复杂形态表型的替代物。然而,这可能会导致统计效力降低和形状变化的推断不明确。在这项研究中,我们应用了一种新的图像配准方法,该方法自动识别显著地标,并使用高密度像素点对齐样本面部。基于这种高密度配准,我们使用三种不同的表型数据方案来测试常见面部形态变异与 10 个候选单核苷酸多态性之间的关联,并比较了它们的性能。第一种方案使用传统的地标距离;第二种方案依赖于 15 个地标几何分析,第三种方案使用约 30,000 个 3D 点的密集注册进行几何分析。我们发现,这两种几何方法在检测形态变化方面高度一致。使用密集注册的几何方法在精细推断形状变化和 3D 面部建模方面具有优势。几个候选单核苷酸多态性显示出与不同面部特征的潜在关联。特别是,IRF6 基因中的已知非综合征性唇腭裂风险因子 rs642961 与女性汉族正常唇形变异的强烈相关性得到了验证。这项研究进一步表明,密集的面部配准可以显著提高常见面部变异中遗传关联的检测和特征描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2629/3854494/5af9d6d2912e/pcbi.1003375.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验