Suppr超能文献

三维人脸图像的自动地标标注和密集对应注册。

Automatic landmark annotation and dense correspondence registration for 3D human facial images.

机构信息

CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

BMC Bioinformatics. 2013 Jul 22;14:232. doi: 10.1186/1471-2105-14-232.

Abstract

BACKGROUND

Traditional anthropometric studies of human face rely on manual measurements of simple features, which are labor intensive and lack of full comprehensive inference. Dense surface registration of three-dimensional (3D) human facial images holds great potential for high throughput quantitative analyses of complex facial traits. However there is a lack of automatic high density registration method for 3D faical images. Furthermore, current approaches of landmark recognition require further improvement in accuracy to support anthropometric applications.

RESULT

Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is highly accurate in landmark recognition, with an average RMS error of ~1.7 mm. The registration process is highly robust, even for different ethnicities.

CONCLUSION

This method supports fully automatic registration of dense 3D facial images, with 17 landmarks annotated at greatly improved accuracy. A stand-alone software has been implemented to assist high-throughput high-content anthropometric analysis.

摘要

背景

传统的人面人类学研究依赖于对简单特征的手动测量,这种方法既费时费力,又缺乏全面综合的推断。三维(3D)人脸图像的密集表面配准在对复杂面部特征进行高通量定量分析方面具有很大的潜力。然而,目前还缺乏用于 3D 人脸图像的自动高密度配准方法。此外,当前的地标识别方法需要进一步提高准确性,以支持人类学应用。

结果

在这里,我们描述了一种用于全自动 3D 人脸图像映射的新型非刚性配准方法。该方法包括两个步骤:首先,通过 3D 到 2D 数据转换后的基于 PCA 的特征识别,自动标注 17 个面部地标。其次,使用高效的薄板样条(TPS)协议,在预定义地标引导下,建立人脸图像之间的密集解剖对应关系。我们证明了该方法在地标识别方面具有很高的准确性,平均 RMS 误差约为 1.7 毫米。该注册过程具有很高的鲁棒性,即使对于不同的种族也是如此。

结论

该方法支持密集 3D 人脸图像的全自动注册,地标标注的准确性大大提高。已经实现了一个独立的软件,以协助高通量高内容人类学分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c1c/3724574/13b896559f0e/1471-2105-14-232-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验