Suppr超能文献

基于生物图像信息学的乳腺癌肿瘤微血管重建及其计算血流预测。

A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions.

机构信息

Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine, USA.

Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine, USA; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, USA.

出版信息

Microvasc Res. 2014 Jan;91:8-21. doi: 10.1016/j.mvr.2013.12.003. Epub 2013 Dec 14.

Abstract

Induction of tumor angiogenesis is among the hallmarks of cancer and a driver of metastatic cascade initiation. Recent advances in high-resolution imaging enable highly detailed three-dimensional geometrical representation of the whole-tumor microvascular architecture. This enormous increase in complexity of image-based data necessitates the application of informatics methods for the analysis, mining and reconstruction of these spatial graph data structures. We present a novel methodology that combines ex-vivo high-resolution micro-computed tomography imaging data with a bioimage informatics algorithm to track and reconstruct the whole-tumor vasculature of a human breast cancer model. The reconstructed tumor vascular network is used as an input of a computational model that estimates blood flow in each segment of the tumor microvascular network. This formulation involves a well-established biophysical model and an optimization algorithm that ensures mass balance and detailed monitoring of all the vessels that feed and drain blood from the tumor microvascular network. Perfusion maps for the whole-tumor microvascular network are computed. Morphological and hemodynamic indices from different regions are compared to infer their role in overall tumor perfusion.

摘要

肿瘤血管生成的诱导是癌症的标志之一,也是转移性级联启动的驱动因素。高分辨率成像的最新进展能够实现整个肿瘤微血管结构的高度详细的三维几何表示。基于图像的数据的这种复杂性的巨大增加需要应用信息学方法来分析、挖掘和重建这些空间图形数据结构。我们提出了一种新的方法,将离体高分辨率微计算机断层扫描成像数据与生物图像信息学算法相结合,以跟踪和重建人类乳腺癌模型的整个肿瘤血管系统。重建的肿瘤血管网络作为计算模型的输入,该模型估计肿瘤微血管网络中每个血管段的血流。这种公式化涉及到一个成熟的生物物理模型和一个优化算法,该算法确保了质量平衡和对所有从肿瘤微血管网络中供血和排出血液的血管的详细监测。整个肿瘤微血管网络的灌注图被计算出来。比较不同区域的形态和血液动力学指数,以推断它们在整体肿瘤灌注中的作用。

相似文献

1
A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions.
Microvasc Res. 2014 Jan;91:8-21. doi: 10.1016/j.mvr.2013.12.003. Epub 2013 Dec 14.
2
Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model.
Angiogenesis. 2014 Jul;17(3):695-709. doi: 10.1007/s10456-014-9429-2. Epub 2014 Apr 10.
3
Vascular phenotyping of the invasive front in breast cancer using a 3D angiogenesis atlas.
Microvasc Res. 2023 Sep;149:104555. doi: 10.1016/j.mvr.2023.104555. Epub 2023 May 29.
6
Imaging angiogenesis: perspectives and opportunities in tumour research - a method display.
J Craniomaxillofac Surg. 2014 Sep;42(6):915-23. doi: 10.1016/j.jcms.2014.01.010. Epub 2014 Jan 14.

引用本文的文献

1
Revolutionizing breast cancer monitoring: emerging hematocrit-based metrics - a narrative review.
Ann Med Surg (Lond). 2025 May 21;87(6):3327-3338. doi: 10.1097/MS9.0000000000003020. eCollection 2025 Jun.
2
AMBER: A Modular Model for Tumor Growth, Vasculature and Radiation Response.
Bull Math Biol. 2024 Oct 26;86(12):139. doi: 10.1007/s11538-024-01371-4.
3
Effect of infusion direction on convection-enhanced drug delivery to anisotropic tissue.
J R Soc Interface. 2024 Oct;21(219):20240378. doi: 10.1098/rsif.2024.0378. Epub 2024 Oct 2.
4
Systematic evaluation of MRI-based characterization of tumor-associated vascular morphology and hemodynamics via a dynamic digital phantom.
J Med Imaging (Bellingham). 2024 Mar;11(2):024002. doi: 10.1117/1.JMI.11.2.024002. Epub 2024 Mar 8.
5
Bio-inspired microfluidics: A review.
Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.
6
Optimization of Size of Nanosensitizers for Antitumor Radiotherapy Using Mathematical Modeling.
Int J Mol Sci. 2023 Jul 22;24(14):11806. doi: 10.3390/ijms241411806.
8
The influence of tumour vasculature on fluid flow in solid tumours: a mathematical modelling study.
Biophys Rep. 2021 Feb 28;7(1):35-54. doi: 10.52601/bpr.2021.200041.
9
Vascular phenotyping of the invasive front in breast cancer using a 3D angiogenesis atlas.
Microvasc Res. 2023 Sep;149:104555. doi: 10.1016/j.mvr.2023.104555. Epub 2023 May 29.

本文引用的文献

1
A Model of Pressure and Flow Distribution in Branching Networks.
J Appl Mech. 1980 Jun;47(2):247-253. doi: 10.1115/1.3153650.
2
3
Multiscale modeling of blood flow: from single cells to blood rheology.
Biomech Model Mechanobiol. 2014 Apr;13(2):239-58. doi: 10.1007/s10237-013-0497-9. Epub 2013 May 14.
4
On the normalization of cerebral blood flow.
J Cereb Blood Flow Metab. 2013 May;33(5):669-72. doi: 10.1038/jcbfm.2013.39. Epub 2013 Mar 13.
5
Assessing breast cancer angiogenesis in vivo: which susceptibility contrast MRI biomarkers are relevant?
Magn Reson Med. 2013 Oct;70(4):1106-16. doi: 10.1002/mrm.24530. Epub 2012 Dec 6.
6
Why bioimage informatics matters.
Nat Methods. 2012 Jun 28;9(7):659-60. doi: 10.1038/nmeth.2024.
7
Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets.
Clin Exp Metastasis. 2012 Oct;29(7):657-62. doi: 10.1007/s10585-012-9500-6. Epub 2012 Jun 13.
8
Skin graft vascular maturation and remodeling: a multifractal approach to morphological quantification.
Microcirculation. 2012 Oct;19(7):652-63. doi: 10.1111/j.1549-8719.2012.00200.x.
10
Multiscale imaging and computational modeling of blood flow in the tumor vasculature.
Ann Biomed Eng. 2012 Nov;40(11):2425-41. doi: 10.1007/s10439-012-0585-5. Epub 2012 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验