Suppr超能文献

前药抗菌剂的筛选与验证

A screen for and validation of prodrug antimicrobials.

作者信息

Fleck Laura E, North E Jeffrey, Lee Richard E, Mulcahy Lawrence R, Casadei Gabriele, Lewis Kim

机构信息

Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA.

出版信息

Antimicrob Agents Chemother. 2014;58(3):1410-9. doi: 10.1128/AAC.02136-13. Epub 2013 Dec 16.

Abstract

The rise of resistant pathogens and chronic infections tolerant to antibiotics presents an unmet need for novel antimicrobial compounds. Identifying broad-spectrum leads is challenging due to the effective penetration barrier of Gram-negative bacteria, formed by an outer membrane restricting amphipathic compounds, and multidrug resistance (MDR) pumps. In chronic infections, pathogens are shielded from the immune system by biofilms or host cells, and dormant persisters tolerant to antibiotics are responsible for recalcitrance to chemotherapy with conventional antibiotics. We reasoned that the dual need for broad-spectrum and sterilizing compounds could be met by developing prodrugs that are activated by bacterium-specific enzymes and that these generally reactive compounds could kill persisters and accumulate over time due to irreversible binding to targets. We report the development of a screen for prodrugs, based on identifying compounds that nonspecifically inhibit reduction of the viability dye alamarBlue, and then eliminate generally toxic compounds by testing for cytotoxicity. A large pilot of 55,000 compounds against Escherichia coli produced 20 hits, 3 of which were further examined. One compound, ADC111, is an analog of a known nitrofuran prodrug nitrofurantoin, and its activity depends on the presence of activating enzymes nitroreductases. ADC112 is an analog of another known antimicrobial tilbroquinol with unknown mechanism of action, and ADC113 does not belong to an approved class. All three compounds had a good spectrum and showed good to excellent activity against persister cells in biofilm and stationary cultures. These results suggest that screening for overlooked prodrugs may present a viable platform for antimicrobial discovery.

摘要

耐药病原体的出现以及对抗生素耐受的慢性感染的存在,凸显了对新型抗菌化合物的迫切需求。由于革兰氏阴性菌存在有效的渗透屏障(由限制两亲性化合物的外膜形成)以及多药耐药(MDR)泵,识别广谱先导化合物具有挑战性。在慢性感染中,病原体通过生物膜或宿主细胞免受免疫系统的攻击,而对抗生素耐受的休眠持留菌则是导致传统抗生素化疗难以奏效的原因。我们推断,开发由细菌特异性酶激活的前药可以满足对广谱和杀菌化合物的双重需求,并且这些通常具有反应活性的化合物可以杀死持留菌,并由于与靶点的不可逆结合而随着时间的推移积累起来。我们报告了一种前药筛选方法的开发,该方法基于识别非特异性抑制活力染料alamarBlue还原的化合物,然后通过检测细胞毒性来消除一般有毒的化合物。对55000种化合物针对大肠杆菌进行的大规模初步筛选产生了20个命中化合物,其中3个被进一步研究。一种化合物ADC111是已知硝基呋喃前药呋喃妥因的类似物,其活性取决于激活酶硝基还原酶的存在。ADC112是另一种已知抗菌药物替布喹诺的类似物,其作用机制未知,而ADC113不属于已获批的类别。所有这三种化合物都具有良好的抗菌谱,并且对生物膜和静止培养物中的持留细胞表现出良好至优异的活性。这些结果表明,筛选被忽视的前药可能为抗菌药物的发现提供一个可行的平台。

相似文献

1
A screen for and validation of prodrug antimicrobials.
Antimicrob Agents Chemother. 2014;58(3):1410-9. doi: 10.1128/AAC.02136-13. Epub 2013 Dec 16.
2
Multidrug tolerance of biofilms and persister cells.
Curr Top Microbiol Immunol. 2008;322:107-31. doi: 10.1007/978-3-540-75418-3_6.
5
Candida albicans biofilms produce antifungal-tolerant persister cells.
Antimicrob Agents Chemother. 2006 Nov;50(11):3839-46. doi: 10.1128/AAC.00684-06. Epub 2006 Aug 21.
6
Treatment strategies targeting persister cell formation in bacterial pathogens.
Crit Rev Microbiol. 2020 Nov;46(6):665-688. doi: 10.1080/1040841X.2020.1822278. Epub 2020 Oct 6.
7
Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli.
J Bacteriol. 2004 Dec;186(24):8172-80. doi: 10.1128/JB.186.24.8172-8180.2004.
8
Persister cells and the riddle of biofilm survival.
Biochemistry (Mosc). 2005 Feb;70(2):267-74. doi: 10.1007/s10541-005-0111-6.

引用本文的文献

1
Sophisticated natural products as antibiotics.
Nature. 2024 Aug;632(8023):39-49. doi: 10.1038/s41586-024-07530-w. Epub 2024 Jul 31.
2
Design and Synthesis of Novel Antimicrobial Agents.
Antibiotics (Basel). 2023 Mar 22;12(3):628. doi: 10.3390/antibiotics12030628.
3
Assessing and utilizing esterase specificity in antimicrobial prodrug development.
Methods Enzymol. 2022;664:199-220. doi: 10.1016/bs.mie.2021.11.008. Epub 2021 Dec 23.
4
Endogenous Enzymes Enable Antimicrobial Activity.
ACS Chem Biol. 2021 May 21;16(5):800-805. doi: 10.1021/acschembio.0c00894. Epub 2021 Apr 20.
5
Metabolites Potentiate Nitrofurans in Nongrowing Escherichia coli.
Antimicrob Agents Chemother. 2021 Feb 17;65(3). doi: 10.1128/AAC.00858-20.
7
Antibacterial Prodrugs to Overcome Bacterial Resistance.
Molecules. 2020 Mar 28;25(7):1543. doi: 10.3390/molecules25071543.
8
Role of oxidative stress in the chemical structure-related genotoxicity of nitrofurantoin in -deficient delta mice.
J Toxicol Pathol. 2018 Jul;31(3):169-178. doi: 10.1293/tox.2018-0014. Epub 2018 Jun 2.
9
High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds.
Sci Transl Med. 2018 Feb 21;10(429). doi: 10.1126/scitranslmed.aal3973.
10
Antimicrobial Activity and Resistance: Influencing Factors.
Front Pharmacol. 2017 Jun 13;8:364. doi: 10.3389/fphar.2017.00364. eCollection 2017.

本文引用的文献

1
Activated ClpP kills persisters and eradicates a chronic biofilm infection.
Nature. 2013 Nov 21;503(7476):365-70. doi: 10.1038/nature12790. Epub 2013 Nov 13.
2
Expanded therapeutic potential in activity space of next-generation 5-nitroimidazole antimicrobials with broad structural diversity.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17564-9. doi: 10.1073/pnas.1302664110. Epub 2013 Oct 7.
4
Platforms for antibiotic discovery.
Nat Rev Drug Discov. 2013 May;12(5):371-87. doi: 10.1038/nrd3975.
5
Killing by bactericidal antibiotics does not depend on reactive oxygen species.
Science. 2013 Mar 8;339(6124):1213-6. doi: 10.1126/science.1232688.
6
Antibiotics: Recover the lost art of drug discovery.
Nature. 2012 May 23;485(7399):439-40. doi: 10.1038/485439a.
7
Tackling antibiotic resistance.
Nat Rev Microbiol. 2011 Nov 2;9(12):894-6. doi: 10.1038/nrmicro2693.
8
Bacterial persistence by RNA endonucleases.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13206-11. doi: 10.1073/pnas.1100186108. Epub 2011 Jul 25.
9
Persister cells.
Annu Rev Microbiol. 2010;64:357-72. doi: 10.1146/annurev.micro.112408.134306.
10
Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli.
PLoS Biol. 2010 Feb 23;8(2):e1000317. doi: 10.1371/journal.pbio.1000317.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验