From the Departments of Molecular and Cell Biology.
J Biol Chem. 2014 Jan 31;289(5):2610-9. doi: 10.1074/jbc.M113.533273. Epub 2013 Dec 16.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as "transceptors" with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.
粗糙脉孢菌(Neurospora crassa)定殖于燃烧过的草原,可代谢植物细胞壁中的纤维素和半纤维素。当粗糙脉孢菌从偏好的碳源切换到纤维素时,其木质纤维素酶编码基因的表达和分泌会显著上调。然而,粗糙脉孢菌和其他丝状真菌感知环境中纤维素存在的方式仍不清楚。先前,我们已经表明,携带三个β-葡萄糖苷酶(β-glucosidase)缺失突变的粗糙脉孢菌突变体(Δ3βG)缺乏β-葡萄糖苷酶活性,但在纤维二糖作为唯一碳源的存在下,能够有效地诱导纤维素酶基因的表达和纤维素活性。这些观察结果表明,纤维二糖或其修饰形式,在粗糙脉孢菌中作为木质纤维素基因表达和活性的诱导物。在这里,我们表明在粗糙脉孢菌中,两种纤维糊精转运蛋白 CDT-1 和 CDT-2 有助于纤维素的感知。携带两个转运蛋白缺失突变的粗糙脉孢菌突变体无法对结晶纤维素作出响应而诱导纤维素酶基因的表达。此外,缺乏编码β-葡萄糖苷酶和纤维糊精转运蛋白的基因的突变体(Δ3βGΔ2T)也不能对纤维二糖作出响应而诱导纤维素酶基因的表达。当单独表达时,点突变严重降低了 CDT-1 或 CDT-2 的纤维二糖转运能力,但对纤维二糖诱导纤维素酶基因表达的影响不大。这些数据表明,粗糙脉孢菌的纤维糊精转运蛋白作为具有双重功能的“转受体”发挥作用 - 纤维糊精转运和受体信号传导,导致下游纤维素酶基因表达的激活。类似的转受体活性机制可能发生在用于工业纤维素酶生产的相关子囊菌中。