OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, United States.
Bioinformatics, Genentech Inc., South San Francisco, CA, United States.
Front Immunol. 2019 Jun 5;10:1194. doi: 10.3389/fimmu.2019.01194. eCollection 2019.
Dimensionality reduction using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm has emerged as a popular tool for visualizing high-parameter single-cell data. While this approach has obvious potential for data visualization it remains unclear how t-SNE analysis compares to conventional manual hand-gating in stratifying and quantitating the frequency of diverse immune cell populations. We applied a comprehensive 38-parameter mass cytometry panel to human blood and compared the frequencies of 28 immune cell subsets using both conventional bivariate and t-SNE-guided manual gating. t-SNE analysis was capable of stratifying every general cellular lineage and most sub-lineages with high correlation between conventional and t-SNE-guided cell frequency calculations. However, specific immune cell subsets delineated by the manual gating of continuous variables were not fully separated in t-SNE space thus causing discrepancies in subset identification and quantification between these analytical approaches. Overall, these studies highlight the consistency between t-SNE and conventional hand-gating in stratifying general immune cell lineages while demonstrating that particular cell subsets defined by conventional manual gating may be intermingled in t-SNE space.
使用 t 分布随机邻域嵌入(t-SNE)算法进行降维已成为可视化高参数单细胞数据的流行工具。虽然这种方法在数据可视化方面具有明显的潜力,但 t-SNE 分析与传统的手动门控在分层和量化不同免疫细胞群体的频率方面的比较尚不清楚。我们应用了一个全面的 38 个参数的质谱细胞术面板来分析人类血液,并比较了 28 个免疫细胞亚群的频率,同时使用传统的双变量和 t-SNE 指导的手动门控。t-SNE 分析能够对每个一般细胞谱系和大多数亚谱系进行分层,并且传统和 t-SNE 指导的细胞频率计算之间具有高度相关性。然而,通过连续变量的手动门控划分的特定免疫细胞亚群在 t-SNE 空间中没有完全分离,因此导致这两种分析方法在亚群识别和定量方面存在差异。总体而言,这些研究强调了 t-SNE 与传统手动门控在分层一般免疫细胞谱系方面的一致性,同时表明传统手动门控定义的特定细胞亚群可能在 t-SNE 空间中混合在一起。