Department of Chemical Engineering and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):131-6. doi: 10.1073/pnas.1311970111. Epub 2013 Dec 16.
Utilization of exogenous sugars found in lignocellulosic biomass hydrolysates, such as xylose, must be improved before yeast can serve as an efficient biofuel and biochemical production platform. In particular, the first step in this process, the molecular transport of xylose into the cell, can serve as a significant flux bottleneck and is highly inhibited by other sugars. Here we demonstrate that sugar transport preference and kinetics can be rewired through the programming of a sequence motif of the general form G-G/F-XXX-G found in the first transmembrane span. By evaluating 46 different heterologously expressed transporters, we find that this motif is conserved among functional transporters and highly enriched in transporters that confer growth on xylose. Through saturation mutagenesis and subsequent rational mutagenesis, four transporter mutants unable to confer growth on glucose but able to sustain growth on xylose were engineered. Specifically, Candida intermedia gxs1 Phe(38)Ile(39)Met(40), Scheffersomyces stipitis rgt2 Phe(38) and Met(40), and Saccharomyces cerevisiae hxt7 Ile(39)Met(40)Met(340) all exhibit this phenotype. In these cases, primary hexose transporters were rewired into xylose transporters. These xylose transporters nevertheless remained inhibited by glucose. Furthermore, in the course of identifying this motif, novel wild-type transporters with superior monosaccharide growth profiles were discovered, namely S. stipitis RGT2 and Debaryomyces hansenii 2D01474. These findings build toward the engineering of efficient pentose utilization in yeast and provide a blueprint for reprogramming transporter properties.
利用木质纤维素生物质水解物中发现的外源性糖,如木糖,必须加以改进,然后酵母才能成为高效的生物燃料和生物化学生产平台。特别是这个过程的第一步,木糖的分子进入细胞的运输,可以作为一个重要的通量瓶颈,并且受到其他糖的高度抑制。在这里,我们通过编程在第一个跨膜跨度中发现的通用形式 G-G/F-XXX-G 的序列基序来证明糖转运偏好和动力学可以被重新布线。通过评估 46 种不同的异源表达的转运蛋白,我们发现这个基序在功能转运蛋白中是保守的,并且在赋予木糖生长的转运蛋白中高度富集。通过饱和诱变和随后的合理诱变,工程设计了四个不能赋予葡萄糖生长能力但能够维持木糖生长能力的转运蛋白突变体。具体来说,Candida intermedia gxs1 Phe(38)Ile(39)Met(40)、Scheffersomyces stipitis rgt2 Phe(38)和 Met(40)以及 Saccharomyces cerevisiae hxt7 Ile(39)Met(40)Met(340)都表现出这种表型。在这些情况下,初级己糖转运蛋白被重新布线成木糖转运蛋白。然而,这些木糖转运蛋白仍然受到葡萄糖的抑制。此外,在鉴定这个基序的过程中,发现了具有优越单糖生长谱的新型野生型转运蛋白,即 S. stipitis RGT2 和 Debaryomyces hansenii 2D01474。这些发现为酵母中高效戊糖利用的工程设计提供了基础,并为重新编程转运蛋白特性提供了蓝图。