Suppr超能文献

酿酒酵母的代谢工程:未来生物炼制厂的关键细胞工厂平台。

Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

机构信息

Novo Nordisk Centre for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.

出版信息

Cell Mol Life Sci. 2012 Aug;69(16):2671-90. doi: 10.1007/s00018-012-0945-1. Epub 2012 Mar 3.

Abstract

Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.

摘要

代谢工程是发展高效细胞工厂的使能科学,通过微生物发酵生产燃料、化学品、药物和食品成分。酵母酿酒酵母是一种关键的细胞工厂,已经用于生产各种工业产品,在这里我们回顾了正在进行的工作,特别是在工业领域,利用这种生物生产丁醇,丁醇可用作生物燃料,以及类异戊二烯,类异戊二烯可广泛应用于药物和生物柴油等领域。我们还研究了如何通过工程酵母来提高对生物质水解物中存在的糖的吸收,从而使生物质能够作为燃料和化学品生产的原料,利用酿酒酵母。最后,我们讨论了如何利用系统生物学和合成生物学的技术来推进酿酒酵母的代谢工程。

相似文献

1
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.
Cell Mol Life Sci. 2012 Aug;69(16):2671-90. doi: 10.1007/s00018-012-0945-1. Epub 2012 Mar 3.
2
Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
Biotechnol J. 2014 May;9(5):609-20. doi: 10.1002/biot.201300445. Epub 2014 Feb 24.
3
From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae.
Biotechnol J. 2013 Dec;8(12):1435-44. doi: 10.1002/biot.201300028. Epub 2013 Nov 12.
4
Yeast Systems Biology: Model Organism and Cell Factory.
Biotechnol J. 2019 Sep;14(9):e1800421. doi: 10.1002/biot.201800421. Epub 2019 May 20.
5
Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
Adv Biochem Eng Biotechnol. 2018;162:175-215. doi: 10.1007/10_2016_22.
6
Yeast synthetic biology toolbox and applications for biofuel production.
FEMS Yeast Res. 2015 Feb;15(1):1-15. doi: 10.1111/1567-1364.12206. Epub 2015 Jan 14.
7
Metabolic engineering of yeast for production of fuels and chemicals.
Curr Opin Biotechnol. 2013 Jun;24(3):398-404. doi: 10.1016/j.copbio.2013.03.023. Epub 2013 Apr 20.
8
Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
FEMS Yeast Res. 2020 Feb 1;20(1). doi: 10.1093/femsyr/foz089.
9
Enabling technologies to advance microbial isoprenoid production.
Adv Biochem Eng Biotechnol. 2015;148:143-60. doi: 10.1007/10_2014_284.
10
Advanced biofuel production by the yeast Saccharomyces cerevisiae.
Curr Opin Chem Biol. 2013 Jun;17(3):480-8. doi: 10.1016/j.cbpa.2013.03.036. Epub 2013 Apr 27.

引用本文的文献

2
Development of precise genome editing and multi-copy integration tools in DL-1.
Synth Syst Biotechnol. 2025 Jun 24;10(4):1224-1233. doi: 10.1016/j.synbio.2025.06.009. eCollection 2025 Dec.
4
Towards net zero land biotechnology: an assessment of biogenic feedstock potential for selected bioprocesses in Germany.
Biotechnol Biofuels Bioprod. 2025 Jul 9;18(1):69. doi: 10.1186/s13068-025-02673-y.
5
Chaperone overexpression boosts heterologous small molecule production in Saccharomyces cerevisiae.
Microb Cell Fact. 2025 May 19;24(1):112. doi: 10.1186/s12934-025-02728-7.
6
Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.
Appl Microbiol Biotechnol. 2024 Dec 28;108(1):547. doi: 10.1007/s00253-024-13379-w.
7
CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids.
Eng Microbiol. 2024 May 28;4(3):100154. doi: 10.1016/j.engmic.2024.100154. eCollection 2024 Sep.
8
Synergistic increase in coproporphyrin III biosynthesis by mitochondrial compartmentalization in engineered .
Synth Syst Biotechnol. 2024 Jul 14;9(4):834-841. doi: 10.1016/j.synbio.2024.07.001. eCollection 2024 Dec.

本文引用的文献

1
Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin.
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):E111-8. doi: 10.1073/pnas.1110740109. Epub 2012 Jan 12.
2
A systems-level approach for metabolic engineering of yeast cell factories.
FEMS Yeast Res. 2012 Mar;12(2):228-48. doi: 10.1111/j.1567-1364.2011.00779.x. Epub 2012 Jan 10.
3
Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.
Curr Opin Biotechnol. 2012 Aug;23(4):624-30. doi: 10.1016/j.copbio.2011.11.021. Epub 2011 Dec 12.
4
Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
PLoS One. 2011;6(11):e27316. doi: 10.1371/journal.pone.0027316. Epub 2011 Nov 4.
5
Beyond petrochemicals: the renewable chemicals industry.
Angew Chem Int Ed Engl. 2011 Nov 4;50(45):10502-9. doi: 10.1002/anie.201102117.
6
Identification and microbial production of a terpene-based advanced biofuel.
Nat Commun. 2011 Sep 27;2:483. doi: 10.1038/ncomms1494.
8
Synergies between synthetic biology and metabolic engineering.
Nat Biotechnol. 2011 Aug 5;29(8):693-5. doi: 10.1038/nbt.1937.
10
Comparative genomics of xylose-fermenting fungi for enhanced biofuel production.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13212-7. doi: 10.1073/pnas.1103039108. Epub 2011 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验