Lienhard Stefan, Malcolm James G, Westin Carl-Frederik, Rathi Yogesh
Computer Vision Laboratory, ETH Zürich, 8092 Zürich, Switzerland.
Psychiatry Neuroimaging Laboratory, Harvard Medical School, Boston, MA, USA.
EURASIP J Adv Signal Process. 2011 Jan 1;2011. doi: 10.1186/1687-6180-2011-77.
We describe a technique that uses tractography to visualize neural pathways in human brains by extending an existing framework that uses overlapping Gaussian tensors to model the signal. At each point on the fiber, an unscented Kalman filter is used to find the most consistent direction as a mixture of previous estimates and of the local model. In our previous framework, the diffusion ellipsoid had a cylindrical shape, i.e., the diffusion tensor's second and third eigenvalues were identical. In this paper, we extend the tensor representation so that the diffusion tensor is represented by an arbitrary ellipsoid. Experiments on synthetic data show a reduction in the angular error at fiber crossings and branchings. Tests on in vivo data demonstrate the ability to trace fibers in areas containing crossings or branchings, and the tests also confirm the superiority of using a full tensor representation over the simplified model.
我们描述了一种技术,该技术通过扩展现有的使用重叠高斯张量对信号进行建模的框架,利用纤维束成像来可视化人类大脑中的神经通路。在纤维上的每个点,使用无迹卡尔曼滤波器来找到最一致的方向,该方向是先前估计值与局部模型的混合。在我们之前的框架中,扩散椭球体呈圆柱形,即扩散张量的第二和第三特征值相同。在本文中,我们扩展了张量表示,使得扩散张量由任意椭球体表示。对合成数据的实验表明,在纤维交叉和分支处角度误差有所降低。对体内数据的测试证明了在包含交叉或分支的区域追踪纤维的能力,并且这些测试还证实了使用完整张量表示优于简化模型。