Suppr超能文献

基于非负混合范数凸优化的相差显微镜有丝分裂细胞检测

Nonnegative mixed-norm convex optimization for mitotic cell detection in phase contrast microscopy.

机构信息

School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China.

College of Life Sciences, Tianjin Normal University, Tianjin 300387, China ; Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

出版信息

Comput Math Methods Med. 2013;2013:176272. doi: 10.1155/2013/176272. Epub 2013 Nov 19.

Abstract

This paper proposes a nonnegative mix-norm convex optimization method for mitotic cell detection. First, we apply an imaging model-based microscopy image segmentation method that exploits phase contrast optics to extract mitotic candidates in the input images. Then, a convex objective function regularized by mix-norm with nonnegative constraint is proposed to induce sparsity and consistence for discriminative representation of deformable objects in a sparse representation scheme. At last, a Support Vector Machine classifier is utilized for mitotic cell modeling and detection. This method can overcome the difficulty in feature formulation for deformable objects and is independent of tracking or temporal inference model. The comparison experiments demonstrate that the proposed method can produce competing results with the state-of-the-art methods.

摘要

本文提出了一种基于非负混合范数凸优化的有丝分裂细胞检测方法。首先,我们应用一种基于成像模型的显微镜图像分割方法,利用相差光学提取输入图像中的有丝分裂候选物。然后,我们提出了一个正则化的凸目标函数,它由非负的混合范数约束,以在稀疏表示方案中诱导可变形物体的区分表示的稀疏性和一致性。最后,我们利用支持向量机分类器进行有丝分裂细胞建模和检测。该方法可以克服可变形物体特征表示的困难,并且不依赖于跟踪或时间推理模型。对比实验表明,该方法可以得到与最先进方法相媲美的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c828/3852582/c7d07fcd4fef/CMMM2013-176272.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验