Yin Zhaozheng, Li Kang, Kanade Takeo, Chen Mei
Carnegie Mellon University, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):209-17. doi: 10.1007/978-3-642-15705-9_26.
Image segmentation is essential for many automated microscopy image analysis systems. Rather than treating microscopy images as general natural images and rushing into the image processing warehouse for solutions, we propose to study a microscope's optical properties to model its image formation process first using phase contrast microscopy as an exemplar. It turns out that the phase contrast imaging system can be relatively well explained by a linear imaging model. Using this model, we formulate a quadratic optimization function with sparseness and smoothness regularizations to restore the "authentic" phase contrast images that directly correspond to specimen's optical path length without phase contrast artifacts such as halo and shade-off. With artifacts removed, high quality segmentation can be achieved by simply thresholding the restored images. The imaging model and restoration method are quantitatively evaluated on two sequences with thousands of cells captured over several days.
图像分割对于许多自动化显微镜图像分析系统至关重要。我们不是将显微镜图像当作一般的自然图像,然后匆忙进入图像处理的“仓库”寻找解决方案,而是建议先研究显微镜的光学特性,以相位对比显微镜为例对其图像形成过程进行建模。事实证明,相位对比成像系统可以用线性成像模型得到较好的解释。利用该模型,我们制定了一个具有稀疏性和平滑性正则化的二次优化函数,以恢复直接对应于标本光程长度的“真实”相位对比图像,而没有诸如光晕和阴影等相位对比伪像。去除伪像后,通过简单地对恢复后的图像进行阈值处理就可以实现高质量的分割。我们在两个包含几天内捕获的数千个细胞的序列上对成像模型和恢复方法进行了定量评估。