Suppr超能文献

资源竞争可能有助于有效治疗抗生素耐药感染。

Resource competition may lead to effective treatment of antibiotic resistant infections.

机构信息

Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America.

Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America ; Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2013 Dec 13;8(12):e80775. doi: 10.1371/journal.pone.0080775. eCollection 2013.

Abstract

Drug resistance is a common problem in the fight against infectious diseases. Recent studies have shown conditions (which we call antiR) that select against resistant strains. However, no specific drug administration strategies based on this property exist yet. Here, we mathematically compare growth of resistant versus sensitive strains under different treatments (no drugs, antibiotic, and antiR), and show how a precisely timed combination of treatments may help defeat resistant strains. Our analysis is based on a previously developed model of infection and immunity in which a costly plasmid confers antibiotic resistance. As expected, antibiotic treatment increases the frequency of the resistant strain, while the plasmid cost causes a reduction of resistance in the absence of antibiotic selection. Our analysis suggests that this reduction occurs under competition for limited resources. Based on this model, we estimate treatment schedules that would lead to a complete elimination of both sensitive and resistant strains. In particular, we derive an analytical expression for the rate of resistance loss, and hence for the time necessary to turn a resistant infection into sensitive (tclear). This time depends on the experimentally measurable rates of pathogen division, growth and plasmid loss. Finally, we estimated tclear for a specific case, using available empirical data, and found that resistance may be lost up to 15 times faster under antiR treatment when compared to a no treatment regime. This strategy may be particularly suitable to treat chronic infection. Finally, our analysis suggests that accounting explicitly for a resistance-decaying rate may drastically change predicted outcomes in host-population models.

摘要

耐药性是抗击传染病的一个常见问题。最近的研究表明存在选择耐药菌株的条件(我们称之为 antiR)。然而,目前还没有基于这种特性的特定药物管理策略。在这里,我们根据不同的治疗方法(无药物、抗生素和 antiR)对耐药菌株和敏感菌株的生长进行了数学比较,并展示了如何精确地结合治疗方法来帮助击败耐药菌株。我们的分析基于先前开发的感染和免疫模型,其中一个昂贵的质粒赋予了抗生素耐药性。正如预期的那样,抗生素治疗会增加耐药菌株的频率,而质粒成本会导致在没有抗生素选择的情况下耐药性降低。我们的分析表明,这种减少是在有限资源竞争的情况下发生的。基于这个模型,我们估计了可以导致敏感和耐药菌株完全消除的治疗方案。特别是,我们推导出了一个用于计算耐药性丧失率的解析表达式,因此也可以计算将耐药性感染转化为敏感性感染所需的时间(tclear)。这个时间取决于病原体分裂、生长和质粒丢失的实验可测量速率。最后,我们使用可用的经验数据为特定情况估算了 tclear,并发现与无治疗方案相比,在 antiR 治疗下,耐药性丧失的速度可能快 15 倍。这种策略可能特别适合治疗慢性感染。最后,我们的分析表明,明确考虑耐药性丧失率可能会极大地改变宿主群体模型中的预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6662/3862480/bb4095e483e2/pone.0080775.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验