Suppr超能文献

基于兽医实验室数据的综合征监测:算法组合和警报定制。

Syndromic surveillance using veterinary laboratory data: algorithm combination and customization of alerts.

机构信息

Department of Health Management, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.

Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada.

出版信息

PLoS One. 2013 Dec 11;8(12):e82183. doi: 10.1371/journal.pone.0082183. eCollection 2013.

Abstract

BACKGROUND

Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals.

METHODS

This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed.

RESULTS

The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described.

CONCLUSION

The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes.

摘要

背景

综合征监测研究主要集中在两个主题上:寻找能够提供早期疾病检测的数据来源;以及开发能够检测潜在爆发信号的高效算法。

方法

本研究结合了三种算法,这些算法在检测实验室提交计数时间序列中不同形状的模拟爆发信号方面表现出了良好的性能。这三种算法分别是:旨在检测计数突然激增的休哈特控制图;为检测缓慢增加的疫情而开发的 EWMA 控制图;以及能够明确解释监测数据流中时间效应的霍尔特-温特斯指数平滑法。提出了一种使用这些算法互补地检测和报告警报的评分系统。

结果

并行使用多种算法可提高系统的灵敏度。在模拟数据中特异性降低,但当该方法应用于实际数据时,每年的误报数量被认为是可管理的(对于监测的十个综合征组中的每个组,每年为 1 到 3 次)。该方法的自动化实现,包括用于在线过滤潜在爆发信号的方法,也在文中进行了描述。

结论

所开发的系统在检测潜在爆发信号方面具有很高的灵敏度,同时在确定哪些信号构成警报方面具有稳健性和灵活性。这种灵活性允许分析师针对不同的综合征对系统进行定制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fad/3859592/2ab2cddc1e57/pone.0082183.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验