Suppr超能文献

胶质细胞及其他形态复杂细胞运动性定量的改进方法。

Improved method for the quantification of motility in glia and other morphologically complex cells.

作者信息

Sild Mari, Chatelain Robert P, Ruthazer Edward S

机构信息

Montreal Neurological Institute, 3801 University Street, McGill University Montreal, QC, Canada H3A 2B4 ; Department of Psychiatry, McGill University, Canada.

Department of Physics, McGill University, Canada.

出版信息

Neural Plast. 2013;2013:853727. doi: 10.1155/2013/853727. Epub 2013 Nov 20.

Abstract

Cells such as astrocytes and radial glia with many densely ramified, fine processes pose particular challenges for the quantification of structural motility. Here we report the development of a method to calculate a motility index for individual cells with complex, dynamic morphologies. This motility index relies on boxcar averaging of the difference images generated by subtraction of images collected at consecutive time points. An image preprocessing step involving 2D projection, edge detection, and dilation of the raw images is first applied in order to binarize the images. The boxcar averaging of difference images diminishes the impact of artifactual pixel fluctuations while accentuating the group-wise changes in pixel values which are more likely to represent real biological movement. Importantly, this provides a value that correlates with mean process elongation and retraction rates without requiring detailed reconstructions of very complex cells. We also demonstrate that additional increases in the sensitivity of the method can be obtained by denoising images using the temporal frequency power spectra, based on the fact that rapid intensity fluctuations over time are mainly due to imaging artifact. The MATLAB programs implementing these motility analysis methods, complete with user-friendly graphical interfaces, have been made publicly available for download.

摘要

诸如星形胶质细胞和具有许多密集分支、精细突起的放射状胶质细胞等细胞,对结构运动性的量化提出了特殊挑战。在此,我们报告了一种为具有复杂、动态形态的单个细胞计算运动指数的方法的开发。该运动指数依赖于对通过减去连续时间点采集的图像所生成的差异图像进行矩形窗平均。首先应用一个涉及原始图像的二维投影、边缘检测和膨胀的图像预处理步骤,以便将图像二值化。差异图像的矩形窗平均减少了人为像素波动的影响,同时突出了更有可能代表真实生物运动的像素值的分组变化。重要的是,这提供了一个与平均突起伸长和回缩速率相关的值,而无需对非常复杂的细胞进行详细重建。我们还证明,基于快速强度随时间波动主要是由于成像伪影这一事实,使用时间频率功率谱对图像进行去噪可以进一步提高该方法的灵敏度。实现这些运动分析方法的MATLAB程序,配有用户友好的图形界面,已公开发布供下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a893/3856165/d0390ae2a7b3/NP2013-853727.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验