Suppr超能文献

用于创建功能性工程肌肉骨骼组织的工程肌肉构建体。

Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue.

机构信息

Molecular & Integrative Physiology, University of Michigan, MI, USA.

出版信息

Regen Med. 2014 Jan;9(1):89-100. doi: 10.2217/rme.13.81.

Abstract

Volumetric muscle loss (VML) is a disabling condition in which current clinical procedures are suboptimal. The field of tissue engineering has many promising strategies for the creation of functional skeletal muscle in vitro. However, there are still two key limitations that prevent it from becoming a solution for treating VML. First, engineered muscle tissue must be biocompatible to facilitate muscle tissue regrowth without generating an immune response. Second, engineered muscle constructs must be scaled up to facilitate replacement of clinically relevant volumes of tissue (centimeters in diameter). There are currently no tissue engineering strategies to produce tissue constructs that are both biocompatible and large enough to facilitate clinical repair. However, recent advances in tissue engineering using synthetic scaffolds, native scaffolds, or scaffold-free approaches may lead to a solution for repair of VML injuries.

摘要

体积性肌肉损失 (VML) 是一种使人丧失能力的病症,目前的临床治疗方法并不理想。组织工程领域有许多有前途的策略,可以在体外创建功能性骨骼肌。然而,仍然存在两个关键的限制,阻止它成为治疗 VML 的解决方案。首先,工程肌肉组织必须具有生物相容性,以便在不产生免疫反应的情况下促进肌肉组织再生。其次,工程肌肉构建体必须进行放大,以促进临床相关体积组织(直径厘米)的替换。目前还没有组织工程策略来生产既具有生物相容性又足够大以促进临床修复的组织构建体。然而,使用合成支架、天然支架或无支架方法进行组织工程的最新进展,可能为 VML 损伤的修复提供解决方案。

相似文献

2
Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches.
J Mater Sci Mater Med. 2021 Jan 21;32(1):15. doi: 10.1007/s10856-020-06476-5.
3
Vascularized and Innervated Skeletal Muscle Tissue Engineering.
Adv Healthc Mater. 2020 Jan;9(1):e1900626. doi: 10.1002/adhm.201900626. Epub 2019 Oct 17.
5
Long-Term Evaluation of Functional Outcomes Following Rat Volumetric Muscle Loss Injury and Repair.
Tissue Eng Part A. 2020 Feb;26(3-4):140-156. doi: 10.1089/ten.TEA.2019.0126. Epub 2020 Jan 23.
6
Recent trends in 3D bioprinting technology for skeletal muscle regeneration.
Acta Biomater. 2024 Jun;181:46-66. doi: 10.1016/j.actbio.2024.04.038. Epub 2024 Apr 30.
8
Naturally derived and synthetic scaffolds for skeletal muscle reconstruction.
Adv Drug Deliv Rev. 2015 Apr;84:208-21. doi: 10.1016/j.addr.2014.08.011. Epub 2014 Aug 29.
9
Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
Acta Biomater. 2015 Oct;25:2-15. doi: 10.1016/j.actbio.2015.07.038. Epub 2015 Jul 26.
10
Tissue Engineered 3D Constructs for Volumetric Muscle Loss.
Ann Biomed Eng. 2024 Sep;52(9):2325-2347. doi: 10.1007/s10439-024-03541-w. Epub 2024 Jul 31.

引用本文的文献

1
Skeletal Muscle Tissue Engineering: From Tissue Regeneration to Biorobotics.
Cyborg Bionic Syst. 2025 May 15;6:0279. doi: 10.34133/cbsystems.0279. eCollection 2025.
2
Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis.
J Funct Biomater. 2025 Jan 10;16(1):21. doi: 10.3390/jfb16010021.
3
Accelerated innervation of biofabricated skeletal muscle implants containing a neurotrophic factor delivery system.
Front Bioeng Biotechnol. 2024 Oct 28;12:1476370. doi: 10.3389/fbioe.2024.1476370. eCollection 2024.
4
Impact of Human Recombinant Irisin on Tissue-Engineered Skeletal Muscle Structure and Function.
Tissue Eng Part A. 2024 Jan;30(1-2):94-101. doi: 10.1089/ten.TEA.2023.0187. Epub 2023 Nov 6.
8
Organotypic cultures as aging associated disease models.
Aging (Albany NY). 2022 Nov 22;14(22):9338-9383. doi: 10.18632/aging.204361.
9
3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss.
Biomater Adv. 2022 Nov;142:213171. doi: 10.1016/j.bioadv.2022.213171. Epub 2022 Oct 24.
10
Scalable macroporous hydrogels enhance stem cell treatment of volumetric muscle loss.
Biomaterials. 2022 Nov;290:121818. doi: 10.1016/j.biomaterials.2022.121818. Epub 2022 Sep 23.

本文引用的文献

2
Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales.
Acta Biomater. 2014 Apr;10(4):1488-501. doi: 10.1016/j.actbio.2013.08.038. Epub 2013 Sep 6.
5
Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs?
FEBS J. 2013 Sep;280(17):4100-8. doi: 10.1111/febs.12370. Epub 2013 Jun 24.
6
Skeletal muscle tissue engineering: which cell to use?
Tissue Eng Part B Rev. 2013 Dec;19(6):503-15. doi: 10.1089/ten.TEB.2013.0120. Epub 2013 Jul 3.
8
Improved recellularization of ex vivo vascular scaffolds using directed transport gradients to modulate ECM remodeling.
Biotechnol Bioeng. 2013 Jul;110(7):2035-45. doi: 10.1002/bit.24934. Epub 2013 Apr 29.
9
Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues.
Mater Sci Eng C Mater Biol Appl. 2013 May 1;33(4):2104-12. doi: 10.1016/j.msec.2013.01.024. Epub 2013 Jan 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验