Suppr超能文献

3D 打印一种生物相容性弹性体,用于模拟体积缺失性肌肉损失后的肌肉再生。

3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss.

机构信息

Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.

Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of Orthopaedic Surgery, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.

出版信息

Biomater Adv. 2022 Nov;142:213171. doi: 10.1016/j.bioadv.2022.213171. Epub 2022 Oct 24.

Abstract

Volumetric muscle loss (VML) injuries due to trauma, tumor ablation, or other degenerative muscle diseases are debilitating and currently have limited options for self-repair. Advancements in 3D printing allow for the rapid fabrication of biocompatible scaffolds with designer patterns. However, the materials chosen are often stiff or brittle, which is not optimal for muscle tissue engineering. This study utilized a photopolymerizable biocompatible elastomer - poly (glycerol sebacate) acrylate (PGSA) - to develop an in vitro model of muscle regeneration and proliferation into an acellular scaffold after VML injury. Mechanical properties of the scaffold were tuned by controlling light intensity during the 3D printing process to match the specific tension of skeletal muscle. The effect of both geometric (channel sizes between 300 and 600 μm) and biologic (decellularized muscle extracellular matrix (dECM)) cues on muscle progenitor cell infiltration, proliferation, organization, and maturation was evaluated in vitro using a near-infrared fluorescent protein (iRFP) transfected cell line to assess cells in the 3D scaffold. Larger channel sizes and dECM coating were found to enhance cell proliferation and maturation, while no discernable effect on cell alignment was observed. In addition, a pilot experiment was carried out to evaluate the regenerative capacity of this scaffold in vivo after a VML injury. Overall, this platform demonstrates a simple model to study muscle progenitor recruitment and differentiation into acellular scaffolds after VML repair.

摘要

体积性肌肉损失(VML)损伤由于创伤、肿瘤消融或其他退行性肌肉疾病而导致的肌肉损失,目前自我修复的选择有限。3D 打印技术的进步使得能够快速制造具有设计图案的生物相容性支架。然而,所选择的材料通常是僵硬或易碎的,这对于肌肉组织工程来说不是最佳选择。本研究利用光聚合生物相容性弹性体 - 聚(癸二酸甘油酯)丙烯酰胺(PGSA) - 开发了一种体外肌肉再生和增殖模型,将其增殖到 VML 损伤后的细胞外基质支架中。通过控制 3D 打印过程中的光强度来调整支架的机械性能,以匹配骨骼肌的特定张力。使用近红外荧光蛋白(iRFP)转染细胞系评估几何形状(300 至 600μm 之间的通道大小)和生物(脱细胞肌肉细胞外基质(dECM))线索对肌肉祖细胞渗透、增殖、组织和成熟的影响在体外评估细胞在 3D 支架中的情况。较大的通道尺寸和 dECM 涂层被发现可增强细胞增殖和成熟,而对细胞排列没有明显影响。此外,还进行了一项初步实验,以评估 VML 损伤后该支架在体内的再生能力。总的来说,该平台展示了一种简单的模型,用于研究 VML 修复后肌肉祖细胞募集和分化到细胞外基质支架中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验