Suppr超能文献

基于脑电图,利用霍普菲尔德神经网络对人类左右转向驾驶性能的分析。

EEG-based analysis of human driving performance in turning left and right using Hopfield neural network.

作者信息

Taghizadeh-Sarabi Mitra, Niksirat Kavous Salehzadeh, Khanmohammadi Sohrab, Nazari Mohammadali

机构信息

Department of Mechatronics Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Department of Control Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

Springerplus. 2013 Dec 10;2:662. doi: 10.1186/2193-1801-2-662. eCollection 2013.

Abstract

In this article a quantitative analysis was devised assessing driver's cognition responses by exploring the neurobiological information underlying electroencephalographic (EEG) brain signals in a left and right turning experiment on simulator environment. Driving brain signals have been collected by a 19-channel electroencephalogram recording system. The driving pathway has been selected with no obstacles, a set of indicators are used to inform the subjects when they had to turn left or right by means of keyboard left and right arrows. Subsequently in order to remove artifacts, preprocessing is performed on data to achieve high accuracy. Features of signals are extracted by using Fast Fourier Transform (FFT). Absolute power of FFT is used as a basic feature. Scalar Feature selection method is applied to reduce feature dimension. Thereafter dimension-reduced features are fed to Hopfield Neural Network (HNN) recognizing different brain potentials stimulated by turning to left and right. The performances of HNN are evaluated by considering five conditions; before feature extraction, after feature extraction, before reduction of features, after analyzing reduced features and finally subject-wise Hopfield performances respectively. An increase occurred in each level and continued until it has reached its highest 97.6% of accuracy on last condition.

摘要

在本文中,设计了一种定量分析方法,通过在模拟器环境下的左右转弯实验中探索脑电图(EEG)脑信号背后的神经生物学信息,来评估驾驶员的认知反应。驾驶脑信号由一个19通道脑电图记录系统采集。驾驶路径选择为无障碍物,通过键盘左右箭头向受试者发出向左或向右转的指令。随后,为了去除伪迹,对数据进行预处理以实现高精度。使用快速傅里叶变换(FFT)提取信号特征。FFT的绝对功率用作基本特征。应用标量特征选择方法来减少特征维度。此后,将降维后的特征输入霍普菲尔德神经网络(HNN),以识别由向左和向右转所激发的不同脑电位。通过考虑五个条件来评估HNN的性能;分别为特征提取前、特征提取后、特征降维前、分析降维特征后以及最终按受试者的霍普菲尔德性能。在每个阶段准确率都有所提高,直到在最后一个条件下达到最高的97.6%的准确率。

相似文献

1
EEG-based analysis of human driving performance in turning left and right using Hopfield neural network.
Springerplus. 2013 Dec 10;2:662. doi: 10.1186/2193-1801-2-662. eCollection 2013.
2
EEG-based assessment of driver cognitive responses in a dynamic virtual-reality driving environment.
IEEE Trans Biomed Eng. 2007 Jul;54(7):1349-52. doi: 10.1109/TBME.2007.891164.
3
Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
Artif Intell Med. 2012 Jun;55(2):117-26. doi: 10.1016/j.artmed.2012.02.001. Epub 2012 Apr 12.
4
Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition.
Clin EEG Neurosci. 2013 Oct;44(4):257-64. doi: 10.1177/1550059413477090. Epub 2013 Mar 26.
5
Application of competitive Hopfield neural network to brain-computer interface systems.
Int J Neural Syst. 2012 Feb;22(1):51-62. doi: 10.1142/S0129065712002979.
6
A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
Comput Methods Programs Biomed. 2017 Jul;146:47-57. doi: 10.1016/j.cmpb.2017.05.009. Epub 2017 May 24.
7
Driver's turning intent recognition model based on brain activation and contextual information.
Front Neuroergon. 2022 Aug 16;3:956863. doi: 10.3389/fnrgo.2022.956863. eCollection 2022.
8
Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains.
ISRN Neurosci. 2014 Feb 13;2014:730218. doi: 10.1155/2014/730218. eCollection 2014.
9
A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification.
J Neurosci Methods. 2019 Jan 15;312:43-52. doi: 10.1016/j.jneumeth.2018.11.014. Epub 2018 Nov 20.
10
Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design.
J Neural Eng. 2004 Sep;1(3):142-50. doi: 10.1088/1741-2560/1/3/003. Epub 2004 Aug 31.

引用本文的文献

1
Driving Style Recognition Based on Electroencephalography Data From a Simulated Driving Experiment.
Front Psychol. 2019 May 29;10:1254. doi: 10.3389/fpsyg.2019.01254. eCollection 2019.

本文引用的文献

1
Selecting EEG components using time series analysis in brain death diagnosis.
Cogn Neurodyn. 2011 Nov;5(4):311-9. doi: 10.1007/s11571-010-9149-2. Epub 2011 May 13.
2
Single tap identification for fast BCI control.
Cogn Neurodyn. 2011 Mar;5(1):21-30. doi: 10.1007/s11571-010-9133-x. Epub 2010 Sep 1.
3
Feature extraction and recognition of epileptiform activity in EEG by combining PCA with ApEn.
Cogn Neurodyn. 2010 Sep;4(3):233-40. doi: 10.1007/s11571-010-9120-2. Epub 2010 Jun 26.
4
A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces.
Cogn Neurodyn. 2010 Sep;4(3):207-16. doi: 10.1007/s11571-010-9114-0. Epub 2010 Jun 8.
5
New insights into name category-related effects: is the Age of Acquisition a possible factor?
Behav Brain Funct. 2009 Jul 29;5:33. doi: 10.1186/1744-9081-5-33.
6
EEG and HRV markers of sleepiness and loss of control during car driving.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2566-9. doi: 10.1109/IEMBS.2008.4649724.
9
Image restoration using a modified Hopfield network.
IEEE Trans Image Process. 1992;1(1):49-63. doi: 10.1109/83.128030.
10
Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring.
J Neurosci Methods. 2008 Jan 15;167(1):82-90. doi: 10.1016/j.jneumeth.2007.09.022. Epub 2007 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验