Cogn Neurodyn. 2010 Sep;4(3):233-40. doi: 10.1007/s11571-010-9120-2. Epub 2010 Jun 26.
This paper proposes a new method for feature extraction and recognition of epileptiform activity in EEG signals. The method improves feature extraction speed of epileptiform activity without reducing recognition rate. Firstly, Principal component analysis (PCA) is applied to the original EEG for dimension reduction and to the decorrelation of epileptic EEG and normal EEG. Then discrete wavelet transform (DWT) combined with approximate entropy (ApEn) is performed on epileptic EEG and normal EEG, respectively. At last, Neyman-Pearson criteria are applied to classify epileptic EEG and normal ones. The main procedure is that the principle component of EEG after PCA is decomposed into several sub-band signals using DWT, and ApEn algorithm is applied to the sub-band signals at different wavelet scales. Distinct difference is found between the ApEn values of epileptic and normal EEG. The method allows recognition of epileptiform activities and discriminates them from the normal EEG. The algorithm performs well at epileptiform activity recognition in the clinic EEG data and offers a flexible tool that is intended to be generalized to the simultaneous recognition of many waveforms in EEG.
本文提出了一种新的脑电信号棘波活动特征提取和识别方法。该方法在不降低识别率的情况下提高了棘波活动的特征提取速度。首先,对原始 EEG 进行主成分分析(PCA),以降低 EEG 的维度,并使癫痫 EEG 与正常 EEG 去相关。然后,对癫痫 EEG 和正常 EEG 分别进行离散小波变换(DWT)和近似熵(ApEn)分析。最后,应用 Neyman-Pearson 准则对癫痫 EEG 和正常 EEG 进行分类。主要过程是,先对 PCA 后的 EEG 主成分进行离散小波变换分解成若干子带信号,然后在不同的小波尺度上对各子带信号应用 ApEn 算法。在癫痫和正常 EEG 的 ApEn 值之间发现了明显的差异。该方法可以识别棘波活动,并将其与正常 EEG 区分开来。该算法在临床 EEG 数据中的棘波活动识别中表现良好,提供了一种灵活的工具,旨在推广到 EEG 中同时识别多种波形。