Suppr超能文献

通过 PCA 与 ApEn 相结合对 EEG 中的癫痫样活动进行特征提取和识别。

Feature extraction and recognition of epileptiform activity in EEG by combining PCA with ApEn.

出版信息

Cogn Neurodyn. 2010 Sep;4(3):233-40. doi: 10.1007/s11571-010-9120-2. Epub 2010 Jun 26.

Abstract

This paper proposes a new method for feature extraction and recognition of epileptiform activity in EEG signals. The method improves feature extraction speed of epileptiform activity without reducing recognition rate. Firstly, Principal component analysis (PCA) is applied to the original EEG for dimension reduction and to the decorrelation of epileptic EEG and normal EEG. Then discrete wavelet transform (DWT) combined with approximate entropy (ApEn) is performed on epileptic EEG and normal EEG, respectively. At last, Neyman-Pearson criteria are applied to classify epileptic EEG and normal ones. The main procedure is that the principle component of EEG after PCA is decomposed into several sub-band signals using DWT, and ApEn algorithm is applied to the sub-band signals at different wavelet scales. Distinct difference is found between the ApEn values of epileptic and normal EEG. The method allows recognition of epileptiform activities and discriminates them from the normal EEG. The algorithm performs well at epileptiform activity recognition in the clinic EEG data and offers a flexible tool that is intended to be generalized to the simultaneous recognition of many waveforms in EEG.

摘要

本文提出了一种新的脑电信号棘波活动特征提取和识别方法。该方法在不降低识别率的情况下提高了棘波活动的特征提取速度。首先,对原始 EEG 进行主成分分析(PCA),以降低 EEG 的维度,并使癫痫 EEG 与正常 EEG 去相关。然后,对癫痫 EEG 和正常 EEG 分别进行离散小波变换(DWT)和近似熵(ApEn)分析。最后,应用 Neyman-Pearson 准则对癫痫 EEG 和正常 EEG 进行分类。主要过程是,先对 PCA 后的 EEG 主成分进行离散小波变换分解成若干子带信号,然后在不同的小波尺度上对各子带信号应用 ApEn 算法。在癫痫和正常 EEG 的 ApEn 值之间发现了明显的差异。该方法可以识别棘波活动,并将其与正常 EEG 区分开来。该算法在临床 EEG 数据中的棘波活动识别中表现良好,提供了一种灵活的工具,旨在推广到 EEG 中同时识别多种波形。

相似文献

引用本文的文献

7
Reduced multiple empirical kernel learning machine.简化的多重经验核学习机
Cogn Neurodyn. 2015 Feb;9(1):63-73. doi: 10.1007/s11571-014-9304-2. Epub 2014 Jul 29.

本文引用的文献

4
Denoising based on time-shift PCA.基于时移主成分分析的去噪
J Neurosci Methods. 2007 Sep 30;165(2):297-305. doi: 10.1016/j.jneumeth.2007.06.003. Epub 2007 Jun 8.
7
Entropies for detection of epilepsy in EEG.脑电图中癫痫检测的熵值
Comput Methods Programs Biomed. 2005 Dec;80(3):187-94. doi: 10.1016/j.cmpb.2005.06.012. Epub 2005 Oct 10.
8
Non-linear analysis of EEG signals at various sleep stages.不同睡眠阶段脑电图信号的非线性分析。
Comput Methods Programs Biomed. 2005 Oct;80(1):37-45. doi: 10.1016/j.cmpb.2005.06.011.
9
Characterization of EEG--a comparative study.脑电图的特征——一项比较研究。
Comput Methods Programs Biomed. 2005 Oct;80(1):17-23. doi: 10.1016/j.cmpb.2005.06.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验