Suppr超能文献

基于运动想象的脑机接口中参数设置的半监督支持向量机方法。

A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces.

机构信息

The College of Automation Science and Engineering, South China University of Technology, 510640 Guangzhou, China.

出版信息

Cogn Neurodyn. 2010 Sep;4(3):207-16. doi: 10.1007/s11571-010-9114-0. Epub 2010 Jun 8.

Abstract

Parameter setting plays an important role for improving the performance of a brain computer interface (BCI). Currently, parameters (e.g. channels and frequency band) are often manually selected. It is time-consuming and not easy to obtain an optimal combination of parameters for a BCI. In this paper, motor imagery-based BCIs are considered, in which channels and frequency band are key parameters. First, a semi-supervised support vector machine algorithm is proposed for automatically selecting a set of channels with given frequency band. Next, this algorithm is extended for joint channel-frequency selection. In this approach, both training data with labels and test data without labels are used for training a classifier. Hence it can be used in small training data case. Finally, our algorithms are applied to a BCI competition data set. Our data analysis results show that these algorithms are effective for selection of frequency band and channels when the training data set is small.

摘要

参数设置对于提高脑机接口 (BCI) 的性能起着重要作用。目前,参数(例如通道和频带)通常是手动选择的。对于 BCI 来说,找到参数的最佳组合既耗时又不容易。本文考虑了基于运动想象的 BCI,其中通道和频带是关键参数。首先,提出了一种半监督支持向量机算法,用于自动选择给定频带的一组通道。接下来,将该算法扩展用于联合通道-频带选择。在这种方法中,使用带标签的训练数据和不带标签的测试数据来训练分类器。因此,它可以用于小训练数据集的情况。最后,我们的算法应用于 BCI 竞赛数据集。数据分析结果表明,当训练数据集较小时,这些算法对于频带和通道的选择是有效的。

相似文献

2
Motor imagery EEG classification based on ensemble support vector learning.基于集成支持向量学习的运动想象脑电分类
Comput Methods Programs Biomed. 2020 Sep;193:105464. doi: 10.1016/j.cmpb.2020.105464. Epub 2020 Mar 27.
10
Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification.学习运动想象分类的常见时频空域模式。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:699-707. doi: 10.1109/TNSRE.2021.3071140. Epub 2021 Apr 14.

引用本文的文献

本文引用的文献

3
Effect of feature and channel selection on EEG classification.特征和通道选择对脑电图分类的影响。
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2171-4. doi: 10.1109/IEMBS.2006.259833.
8
Robust classification of EEG signal for brain-computer interface.用于脑机接口的脑电信号稳健分类
IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9. doi: 10.1109/TNSRE.2005.862695.
9
Towards adaptive classification for BCI.面向脑机接口的自适应分类
J Neural Eng. 2006 Mar;3(1):R13-23. doi: 10.1088/1741-2560/3/1/R02. Epub 2006 Mar 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验