Suppr超能文献

器官芯片

Physiologically relevant organs on chips.

机构信息

Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Materials Science and Engineering, University of Texas, Arlington, TX, USA.

出版信息

Biotechnol J. 2014 Jan;9(1):16-27. doi: 10.1002/biot.201300187. Epub 2013 Dec 4.

Abstract

Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology.

摘要

近年来,微工程学与组织工程学的融合取得了重大进展,为实验医学和药物研究生成了有前景的微工程生理模型。本文综述了微工程生理系统(也称为“器官芯片”)的最新进展,这些系统重建了特定人体组织和器官的生理关键特征及其相互作用。该技术采用微工程方法构建器官特异性微环境,重建组织结构、组织-组织相互作用和界面,以及特定器官中发现的动态机械和生化刺激,以指导细胞组装成功能性组织。我们首先讨论了在微流控细胞培养系统中重现重要生理动态机械微环境、生化微环境以及特定组织和器官微结构的关键元素的微工程方法。接着介绍了将生理微环境的关键元素纳入单个微流控细胞培养系统以重现器官水平功能的单个器官模型的微工程实例。最后,本文还介绍了模拟多个器官相互作用以更好地代表人体生理学的微工程多器官系统,包括人体对药物的反应。这种新兴的器官芯片技术有望成为实验医学、人类疾病建模、药物开发和毒理学中 2D 和 3D 细胞培养及动物模型的替代方法。

相似文献

1
Physiologically relevant organs on chips.
Biotechnol J. 2014 Jan;9(1):16-27. doi: 10.1002/biot.201300187. Epub 2013 Dec 4.
2
Microengineered physiological biomimicry: organs-on-chips.
Lab Chip. 2012 Jun 21;12(12):2156-64. doi: 10.1039/c2lc40089h. Epub 2012 May 3.
3
Microfabrication of human organs-on-chips.
Nat Protoc. 2013 Nov;8(11):2135-57. doi: 10.1038/nprot.2013.137. Epub 2013 Oct 10.
4
Organs-on-chips: breaking the in vitro impasse.
Integr Biol (Camb). 2012 May;4(5):461-70. doi: 10.1039/c2ib00176d. Epub 2012 Mar 5.
5
Methods of Delivering Mechanical Stimuli to Organ-on-a-Chip.
Micromachines (Basel). 2019 Oct 14;10(10):700. doi: 10.3390/mi10100700.
6
Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering.
Sensors (Basel). 2015 Dec 10;15(12):31142-70. doi: 10.3390/s151229848.
7
Microengineered Organ-on-a-chip Platforms towards Personalized Medicine.
Curr Pharm Des. 2018;24(45):5354-5366. doi: 10.2174/1381612825666190222143542.
8
Bioinspired Engineering of Organ-on-Chip Devices.
Adv Exp Med Biol. 2019;1174:401-440. doi: 10.1007/978-981-13-9791-2_13.
9
Organs-on-a-chip: a focus on compartmentalized microdevices.
Ann Biomed Eng. 2012 Jun;40(6):1211-27. doi: 10.1007/s10439-011-0455-6. Epub 2011 Nov 8.
10
Biomimetic cardiac microsystems for pathophysiological studies and drug screens.
J Lab Autom. 2015 Apr;20(2):96-106. doi: 10.1177/2211068214560903. Epub 2014 Dec 18.

引用本文的文献

1
Applying 3D cultures and high-throughput technologies to study host-pathogen interactions.
Front Immunol. 2025 Feb 20;16:1488699. doi: 10.3389/fimmu.2025.1488699. eCollection 2025.
4
Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro.
Med Biol Eng Comput. 2024 Jul;62(7):1925-1957. doi: 10.1007/s11517-024-03062-7. Epub 2024 Mar 4.
5
Double-Barrel Perfusion System for Modification of Luminal Contents of Intestinal Organoids.
Methods Mol Biol. 2024;2764:205-224. doi: 10.1007/978-1-0716-3674-9_14.
6
Unlocking Early Cancer Detection: Exploring Biomarkers, Circulating DNA, and Innovative Technological Approaches.
Cureus. 2023 Dec 25;15(12):e51090. doi: 10.7759/cureus.51090. eCollection 2023 Dec.
7
Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation.
Bioengineering (Basel). 2022 Nov 3;9(11):646. doi: 10.3390/bioengineering9110646.
8
PBPK Modeling on Organs-on-Chips: An Overview of Recent Advancements.
Front Bioeng Biotechnol. 2022 Apr 14;10:900481. doi: 10.3389/fbioe.2022.900481. eCollection 2022.
10
Mechanical properties of bulk Sylgard 184 and its extension with silicone oil.
Sci Rep. 2021 Sep 27;11(1):19090. doi: 10.1038/s41598-021-98694-2.

本文引用的文献

1
The future of the patient-specific Body-on-a-chip.
Lab Chip. 2013 Sep 21;13(18):3471-80. doi: 10.1039/c3lc50237f.
2
Assembly of complex cell microenvironments using geometrically docked hydrogel shapes.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4551-6. doi: 10.1073/pnas.1300569110. Epub 2013 Mar 4.
3
A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice.
Sci Transl Med. 2012 Nov 7;4(159):159ra147. doi: 10.1126/scitranslmed.3004249.
4
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues.
Nat Mater. 2012 Sep;11(9):768-74. doi: 10.1038/nmat3357. Epub 2012 Jul 1.
5
6
In vitro microvessels for the study of angiogenesis and thrombosis.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9342-7. doi: 10.1073/pnas.1201240109. Epub 2012 May 29.
7
Microengineered physiological biomimicry: organs-on-chips.
Lab Chip. 2012 Jun 21;12(12):2156-64. doi: 10.1039/c2lc40089h. Epub 2012 May 3.
8
Modeling life.
Ann Biomed Eng. 2012 Jul;40(7):1399-407. doi: 10.1007/s10439-012-0567-7. Epub 2012 Apr 17.
9
Muscle on a chip: in vitro contractility assays for smooth and striated muscle.
J Pharmacol Toxicol Methods. 2012 May-Jun;65(3):126-35. doi: 10.1016/j.vascn.2012.04.001. Epub 2012 Apr 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验